286 research outputs found

    Learning Deep Input-Output Stable Dynamics

    Full text link
    Learning stable dynamics from observed time-series data is an essential problem in robotics, physical modeling, and systems biology. Many of these dynamics are represented as an inputs-output system to communicate with the external environment. In this study, we focus on input-output stable systems, exhibiting robustness against unexpected stimuli and noise. We propose a method to learn nonlinear systems guaranteeing the input-output stability. Our proposed method utilizes the differentiable projection onto the space satisfying the Hamilton-Jacobi inequality to realize the input-output stability. The problem of finding this projection can be formulated as a quadratic constraint quadratic programming problem, and we derive the particular solution analytically. Also, we apply our method to a toy bistable model and the task of training a benchmark generated from a glucose-insulin simulator. The results show that the nonlinear system with neural networks by our method achieves the input-output stability, unlike naive neural networks. Our code is available at https://github.com/clinfo/DeepIOStability.Comment: Accepted in NeurIPS 202

    Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes

    Full text link
    A copper-catalyzed regio- and stereoselective allylboration of 1-trifluoromethylalkenes with bis(pinacolato)diboron (pinB-Bpin) and allylic chlorides has been developed to form functionalized trifluoromethylated products with high diastereoselectivity. The key to success is the judicious choice of Cs2CO3 base and t-Bu-modified dppe-type ligand, which enables the otherwise challenging high catalyst turnover and suppression of the competing defluorination side reaction from an alkylcopper intermediate. The product derivatization of the resulting Bpin moiety can deliver diverse CF3-containing molecules with high stereochemical fidelity.Kojima Y., Nishii Y., Hirano K.. Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes. Organic Letters. 24(40), 7450-7454, 14 October 2022; https://doi.org/10.1021/acs.orglett.2c03024

    Fermented Soybean Powder with Rice Mold in the Absence of Salt Stimulates the Cellular Immune System and Suppresses the Humoral Immune Response in Mice

    Get PDF
    The immunomodulatory effect of fermented non-salty soybean powder (NSBP) was investigated in C3H/HeN mice. The number of splenic CD11b(+), CD49b(+), and interferon (IFN)-gamma(+)CD4(+) cells increased significantly, while that of interleukin (IL)-4(+)CD4(+) and CD19(+) cells decreased significantly in cultures containing NSBP. Similarly, in the spleen and Peyer's patches of mice fed a diet containing NSBP, the number of IL-12(+)CD11b(+), CD49b(+), and IFN-gamma(+)CD4(+) cells increased noticeably, whereas the number of splenic IL-4(+)CD4(+) and CD19b(+) cells was lower compared to mice fed an NSBP-free diet. Superoxide production by peritoneal macrophages was significantly higher in mice fed an NSBP-containing diet. Both intestinal total IgA and serum total IgG levels declined in mice fed the NSBP-containing diet. Microarray analysis of mRNAs extracted from Peyer's patch cells of mice fed the NSBP-containing diet indicated an increase in the expression of several genes related to cellular immune responses, while the expression of genes related to immunoglobulin production decreased. These results indicate that NSBP stimulates the cellular immune response, but suppresses the acquired humoral immune response in C3H/HeN mice.ArticleJOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY. 59(6):564-569 (2013)journal articl

    Experimental Verification of a One-Dimensional Diffraction-Limit Coronagraph

    Full text link
    We performed an experimental verification of a coronagraph. As a result, we confirmed that, at the focal region where the planetary point spread function exists, the coronagraph system mitigates the raw contrast of a star-planet system by at least 1×1051\times10^{-5} even for the 1-λ/D\lambda/D star-planet separation. In addition, the verified coronagraph keeps the shapes of the off-axis point spread functions when the setup has the source angular separation of 1λ/D\lambda/D. The low-order wavefront error and the non-zero extinction ratio of the linear polarizer may affect the currently confirmed contrast. The sharpness of the off-axis point spread function generated by the sub-λ/D\lambda/D separated sources is promising for the fiber-based observation of exoplanets. The coupling efficiency with a single mode fiber exceeds 50% when the angular separation is greater than 3--4×101λ/D\times 10^{-1}\lambda/D. For sub-λ/D\lambda/D separated sources, the peak positions (obtained with Gaussian fitting) of the output point spread functions are different from the angular positions of sources; the peak position moved from about 0.8λ/D0.8\lambda/D to 1.0λ/D1.0\lambda/D as the angular separation of the light source varies from 0.1λ/D0.1\lambda/D to 1.0λ/D1.0\lambda/D. The off-axis throughput including the fiber-coupling efficiency (with respect to no focal plane mask) is about 40% for 1-λ/D\lambda/D separated sources and 10% for 0.5-λ/D\lambda/D separated ones (excluding the factor of the ratio of pupil aperture width and Lyot stop width), where we assumed a linear-polarized-light injection. In addition, because this coronagraph can remove point sources on a line in the sky, it has another promising application for high-contrast imaging of exoplanets in binary systems.Comment: 18 pages, 10 figures, accepted for the Publications of the Astronomical Society of the Pacifi

    A New Deep State-Space Analysis Framework for Patient Latent State Estimation and Classification from EHR Time Series Data

    Full text link
    Many diseases, including cancer and chronic conditions, require extended treatment periods and long-term strategies. Machine learning and AI research focusing on electronic health records (EHRs) have emerged to address this need. Effective treatment strategies involve more than capturing sequential changes in patient test values. It requires an explainable and clinically interpretable model by capturing the patient's internal state over time. In this study, we propose the "deep state-space analysis framework," using time-series unsupervised learning of EHRs with a deep state-space model. This framework enables learning, visualizing, and clustering of temporal changes in patient latent states related to disease progression. We evaluated our framework using time-series laboratory data from 12,695 cancer patients. By estimating latent states, we successfully discover latent states related to prognosis. By visualization and cluster analysis, the temporal transition of patient status and test items during state transitions characteristic of each anticancer drug were identified. Our framework surpasses existing methods in capturing interpretable latent space. It can be expected to enhance our comprehension of disease progression from EHRs, aiding treatment adjustments and prognostic determinations.Comment: 21 pages, 6 figure

    Broadband inelastic light scattering of a relaxor ferroelectric 0.71Pb(Ni1/3Nb2/3)O3-0.29PbTiO3

    Get PDF
    Brillouin and Raman scatterings of a 0.71Pb(Ni1/3Nb2/3)O3-0.29PbTiO3 single crystal have been measured to investigate broadband inelastic spectra. The two different central peaks related to fast and slow relaxation processes have been observed separately. These two processes are attributed to the thermally activated switching of polarization in polar nanoregions. By the analysis of modified superparaelectric model, the activation energies of fast and slow relaxation processes are determined to be 3.66×103 and 4.31×102 K, respectively. The fast process with the lower activation energy probably originated from 180° switching, whereas the slow one with the higher energy from non-180° switching

    Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of a human condensin SMC2 hinge domain with short coiled coils

    Full text link
    Kawahara, K., Nakamura, S., Katsu, Y., Motooka, D., Hosokawa, Y., Kojima, Y., Matsukawa, K., Takinowaki, H., Uchiyama, S., Kobayashi, Y., Fukui, K. & Ohkubo, T. (2010). Acta Cryst. F66, 1067-1070

    Lactisole: an inhibitor of the glucose-sensing receptor T1R3 expressed in pancreatic B-cells

    Get PDF
    Glucose activates the glucose-sensing receptor T1R3 and facilitates its own metabolism in pancreatic beta-cells. An inhibitor of this receptor would be helpful in elucidating the physiological function of the glucose-sensing receptor. The present study was conducted to examine whether or not lactisole can be used as an inhibitor of the glucose-sensing receptor. In MIN6 cells, in a dose-dependent manner, lactisole inhibited insulin secretion induced by sweeteners, acesulfame-K, sucralose and glycyrrhizin. The IC50 was similar to 4 mmol/l. Lactisole attenuated the elevation of cytoplasmic Ca2+ concentration ([Ca2+](c)) evoked by sucralose and acesulfame-K but did not affect the elevation of intracellular cAMP concentration ([cAMP](c)) induced by these sweeteners. Lactisole also inhibited the action of glucose in MIN6 cells. Thus, lactisole significantly reduced elevations of intracellular [NADH] and intracellular [ATP] induced by glucose, and also inhibited glucose-induced insulin secretion. To further examine the effect of lactisole on T1R3, we prepared HEK293 cells stably expressing mouse T1R3. In these cells, sucralose elevated both [Ca2+](c) and [cAMP](c). Lactisole attenuated the sucralose-induced increase in [Ca2+](c) but did not affect the elevation of [cAMP](c). Finally, lactisole inhibited insulin secretion induced by a high concentration of glucose in mouse islets. These results indicate that the mouse glucose-sensing receptor was inhibited by lactisole. Lactisole may be useful in assessing the role of the glucose-sensing receptor in mouse pancreatic beta-cells

    Perubahan Harga Lahan dalam Kaitannya dengan Pembangunan Pertanian di Pedesaan Lampung

    Full text link
    IndonesianDalam pembangunan pertanian diperlukan empat faktor penggerak yaitu sumberdaya lahan, sumberdaya manusia, teknologi dan kelembagaan. Keempat faktor diatas saling terkait satu sama lain, sehingga bila salahsatu faktor diatas mengalami hambatan sulit tercapai sasaran yang diinginkan. Pesatnya laju pembangunan beberapa tahun terakhir, menyebabkan sumberdaya lahan terasa semakin terbatas. Hal ini disebabkan oleh terjadinya Perubahan fungsi lahan untuk kepentingan pembangunan itu sendiri. Bertitik tolak dari permasalahan diatas, sumberdaya lahan khususnya lahan pertanian dapat merupakan permasalahan pada masa mendatang. Sumberdaya lahan untuk pertanian akan merupakan suatu komoditi langka dan mempunyai nilai yang tinggi. Kondisi seperti ini akan banyak membawa dampak, baik terhadap nilai lahan, kelembagaan pertanian dan lain sebagainya. Prubahan-Perubahan yang terjadi sudah tentu akan mempengaruhi pembangunan pertanian pada masa mendatang
    corecore