42 research outputs found

    Intracellular electrochemical sensing

    Get PDF
    Observing biochemical processes within living cell is imperative for biological and medical research. Fluoresce imaging is widely used for intracellular sensing of cell membranes, nuclei, lysosomes, and pH. Electrochemical assays have been proposed as an alternative to fluorescence-based assays because of excellent analytical features of electrochemical devices. Notably, thanks to the rapid progress of micro/nanotechnologies and electrochemical techniques, intracellular electrochemical sensing is making rapid progress, leading to a successful detection of intracellular components. Such insight can provide a deep understanding of cellular biological processes and, ultimately, define the human healthy and diseased states. In this review, we present an overview of recent research progress in intracellular electrochemical sensing. We focus on two main topics, electrochemical extraction of cytosolic contents from cells and intracellular electrochemical sensing in situ.Observing biochemical processes within living cell is imperative for biological and medical research. Fluoresce imaging is widely used for intracellular sensing of cell membranes, nuclei, lysosomes, and pH. Electrochemical assays have been proposed as an alternative to fluorescence‐based assays because of excellent analytical features of electrochemical devices. Notably, thanks to the rapid progress of micro/nanotechnologies and electrochemical techniques, intracellular electrochemical sensing is making rapid progress, leading to a successful detection of intracellular components. Such insight can provide a deep understanding of cellular biological processes and, ultimately, define the human healthy and diseased states. In this review, we present an overview of recent research progress in intracellular electrochemical sensing. We focus on two main topics, electrochemical extraction of cytosolic contents from cells and intracellular electrochemical sensing in situ

    Blue Laser Imaging with a Small-Caliber Endoscope Facilitates Detection of Early Gastric Cancer

    Get PDF
    Conventional endoscopy often misses early gastric cancers with minimal red discoloration because they cannot be distinguished from inflamed mucosa. We treated a patient with a small early gastric cancer that was difficult to diagnose using conventional endoscopy. Conventional endoscopy using a small-caliber endoscope showed only subtle red discoloration of the gastric mucosa. However, blue laser imaging showed a clearly discolored area measuring 10 mm in diameter around the red lesion, which was distinct from the surrounding inflamed mucosa. Irregular vessels on the tumor surface (suspicious for early gastric cancer) were observed even with small-caliber endoscopy. Biopsy revealed a well-moderately differentiated tubular adenocarcinoma, and endoscopic submucosal dissection was performed. Histopathological examination of the specimen confirmed well-moderately differentiated adenocarcinoma localized to the mucosa with slight depression compared to the surrounding mucosa, consistent with the endoscopic findings. This small early gastric cancer became clearly visible with blue laser imaging using small-caliber endoscopy

    Linked Color Imaging and Blue Laser Imaging for Upper Gastrointestinal Screening

    Get PDF
    White light imaging (WLI) may not reveal early upper gastrointestinal cancers. Linked color imaging (LCI) produces bright images in the distant view and is performed for the same screening indications as WLI. LCI and blue laser imaging (BLI) provide excellent visibility of gastric cancers in high color contrast with respect to the surrounding tissue. The characteristic purple and green color of metaplasias on LCI and BLI, respectively, serve to increase the contrast while visualizing gastric cancers regardless of a history of Helicobacter pylori eradication. LCI facilitates color-based recognition of early gastric cancers of all morphological types, including flat lesions or those in an H. pylori-negative normal background mucosa as well as the diagnosis of inflamed mucosae including erosions. LCI reveals changes in mucosal color before the appearance of morphological changes in various gastric lesions. BLI is superior to LCI in the detection of early esophageal cancers and abnormal findings of microstructure and microvasculature in close-up views of upper gastrointestinal cancers. Excellent images can also be obtained with transnasal endoscopy. Using a combination of these modalities allows one to obtain images useful for establishing a diagnosis. It is important to observe esophageal cancers (brown) using BLI and gastric cancers (orange) surrounded by intestinal metaplasia (purple) and duodenal cancers (orange) by LCI

    Multiple noncoding exons 1 of nuclear receptors NR4A family (nerve growth factor-induced clone B, Nur-related factor 1 and neuron-derived orphan receptor 1) and NR5A1 (steroidogenic factor 1) in human cardiovascular and adrenal tissues

    Get PDF
    金æČąć€§ć­ŠćŒ»è–Źäżć„ç ”ç©¶ćŸŸćŒ»ć­Šçł»Objective: Nuclear receptors are involved in a wide variety of functions, including aldosteronogenesis. Nuclear receptor families NR4A [nerve growth factor-induced clone B (NGFIB), Nur-related factor 1 (NURR1) and neuron-derived orphan receptor 1 (NOR1)] and NR2F [chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TFI), COUP-TFII and NR2F6) activate, whereas NR5A1 [steroidogenic factor 1 (SF1)] represses CYP11B2 (aldosterone synthase) gene transcription. The present study was undertaken to elucidate the mechanism of differential regulation of nuclear receptors between cardiovascular and adrenal tissues. Methods: We collected tissues of artery (n = 9), cardiomyopathy muscle (n = 9), heart muscle (noncardiomyopathy) (n = 6), adrenal gland (n = 9) and aldosterone-producing adenoma (APA) (n = 9). 5â€Č-rapid amplification of cDNA ends (RACE) identified transcription start sites. Multiplex reverse-transcription PCR (RT-PCR) determined use of alternative noncoding exons 1 (ANEs). Results: In adrenocortical H295R cells, angiotensin II, KCl or cAMP, all stimulated CYP11B2 transcription and NR4A was upregulated, whereas NR2F and NR5A1 were downregulated. 5â€Č-RACE and RT-PCR revealed four ANEs of NGFIB (NR4A1), three of NURR1 (NR4A2), two of NOR1 (NR4A3) and two of SF1 (NR5A1) in cardiovascular and adrenal tissues. Quantitative multiplex RT-PCR showed NR4A and NR5A1 differentially employed multiple ANEs in a tissue-specific manner. The use of ANEs of NGFIB and NURR1 was significantly different between APA and artery. Changes in use of ANEs of NGFIB and NOR1 were observed between cardiomyopathy and noncardiomyopathy. The NR4A mRNA levels in artery were high compared with cardiac and adrenal tissues, whereas the NR5A1 mRNA level in adrenal tissues was extremely high compared with cardiovascular tissues. Conclusion: NR4A and NR5A1 genes are complex in terms of alternative promoter use. The use of ANEs may be associated with the pathophysiology of the heart and adrenal gland. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

    STM-induced light emission from thin films of perylene derivatives on the HOPG and Au substrates

    Get PDF
    We have investigated the emission properties of N,N'-diheptyl-3,4,9,10-perylenetetracarboxylic diimide thin films by the tunneling-electron-induced light emission technique. A fluorescence peak with vibronic progressions with large Stokes shifts was observed on both highly ordered pyrolytic graphite (HOPG) and Au substrates, indicating that the emission was derived from the isolated-molecule-like film condition with sufficient π-π interaction of the perylene rings of perylenetetracarboxylic diimide molecules. The upconversion emission mechanism of the tunneling-electron-induced emission was discussed in terms of inelastic tunneling including multiexcitation processes. The wavelength-selective enhanced emission due to a localized tip-induced surface plasmon on the Au substrate was also obtained

    Oxygen metabolism analysis of a single organoid for non-invasive discrimination of cancer subpopulations with different growth capabilities

    Get PDF
    Heterogeneous nature is a pivotal aspect of cancer, rendering treatment problematic and frequently resulting in recurrence. Therefore, advanced techniques for identifying subpopulations of a tumour in an intact state are essential to develop novel screening platforms that can reveal differences in treatment response among subpopulations. Herein, we conducted a non-invasive analysis of oxygen metabolism on multiple subpopulations of patient-derived organoids, examining its potential utility for non-destructive identification of subpopulations. We utilised scanning electrochemical microscopy (SECM) for non-invasive analysis of oxygen metabolism. As models of tumours with heterogeneous subpopulations, we used patient-derived cancer organoids with a distinct growth potential established using the cancer tissue-originated spheroid methodology. Scanning electrochemical microscopy measurements enabled the analysis of the oxygen consumption rate (OCR) for individual organoids as small as 100 ”m in diameter and could detect the heterogeneity amongst studied subpopulations, which was not observed in conventional colorectal cancer cell lines. Furthermore, our oxygen metabolism analysis of pre-isolated subpopulations with a slow growth potential revealed that oxygen consumption rate may reflect differences in the growth rate of organoids. Although the proposed technique currently lacks single-cell level sensitivity, the variability of oxygen metabolism across tumour subpopulations is expected to serve as an important indicator for the discrimination of tumour subpopulations and construction of novel drug screening platforms in the future

    Ion Conductance-Based Perfusability Assay of Vascular Vessel Models in Microfluidic Devices

    No full text
    We present a novel methodology based on ion conductance to evaluate the perfusability of vascular vessels in microfluidic devices without microscopic imaging. The devices consisted of five channels, with the center channel filled with fibrin/collagen gel containing human umbilical vein endothelial cells (HUVECs). Fibroblasts were cultured in the other channels to improve the vascular network formation. To form vessel structures bridging the center channel, HUVEC monolayers were prepared on both side walls of the gel. During the culture, the HUVECs migrated from the monolayer and connected to the HUVECs in the gel, and vascular vessels formed, resulting in successful perfusion between the channels after culturing for 3–5 d. To evaluate perfusion without microscopic imaging, Ag/AgCl wires were inserted into the channels, and ion currents were obtained to measure the ion conductance between the channels separated by the HUVEC monolayers. As the HUVEC monolayers blocked the ion current flow, the ion currents were low before vessel formation. In contrast, ion currents increased after vessel formation because of creation of ion current paths. Thus, the observed ion currents were correlated with the perfusability of the vessels, indicating that they can be used as indicators of perfusion during vessel formation in microfluidic devices. The developed methodology will be used for drug screening using organs-on-a-chip containing vascular vessels

    Intracellular electrochemical sensing

    No full text
    Observing biochemical processes within living cell is imperative for biological and medical research. Fluoresce imaging is widely used for intracellular sensing of cell membranes, nuclei, lysosomes, and pH. Electrochemical assays have been proposed as an alternative to fluorescence-based assays because of excellent analytical features of electrochemical devices. Notably, thanks to the rapid progress of micro/nanotechnologies and electrochemical techniques, intracellular electrochemical sensing is making rapid progress, leading to a successful detection of intracellular components. Such insight can provide a deep understanding of cellular biological processes and, ultimately, define the human healthy and diseased states. In this review, we present an overview of recent research progress in intracellular electrochemical sensing. We focus on two main topics, electrochemical extraction of cytosolic contents from cells and intracellular electrochemical sensing in situ.Observing biochemical processes within living cell is imperative for biological and medical research. Fluoresce imaging is widely used for intracellular sensing of cell membranes, nuclei, lysosomes, and pH. Electrochemical assays have been proposed as an alternative to fluorescence‐based assays because of excellent analytical features of electrochemical devices. Notably, thanks to the rapid progress of micro/nanotechnologies and electrochemical techniques, intracellular electrochemical sensing is making rapid progress, leading to a successful detection of intracellular components. Such insight can provide a deep understanding of cellular biological processes and, ultimately, define the human healthy and diseased states. In this review, we present an overview of recent research progress in intracellular electrochemical sensing. We focus on two main topics, electrochemical extraction of cytosolic contents from cells and intracellular electrochemical sensing in situ
    corecore