78 research outputs found

    Probing the Functions of Transcription Regulators in Embryonic Stem Cells

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome

    Somatic coding mutations in human induced pluripotent stem cells

    Get PDF
    Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods, it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous, nonsense or splice variants, and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies, whereas the rest occurred during or after reprogramming. Thus, hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use

    Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells

    Get PDF
    February 17, 2011The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome[superscript 1, 2, 3, 4, 5], resulting in altered patterns of gene expression[superscript 2, 6, 7, 8, 9]. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs)[superscript 10, 11] that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells

    The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.

    No full text
    [[sponsorship]]基因體研究中心[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1061-4036&DestApp=JCR&RQ=IF_CAT_BOXPLOT[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=00023634050001

    Molecular framework underlying pluripotency

    No full text

    Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells

    No full text
    Embryonic stem (ES) cells are pluripotent cells with the ability to self-renew indefinitely. These unique properties are controlled by genetic factors and chromatin structure. The exit from the self-renewing state is accompanied by changes in epigenetic chromatin modifications such as an induction in the silencing-associated histone H3 Lys 9 dimethylation and trimethylation (H3K9Me2/Me3) marks. Here, we show that the H3K9Me2 and H3K9Me3 demethylase genes, Jmjd1a and Jmjd2c, are positively regulated by the ES cell transcription factor Oct4. Interestingly, Jmjd1a or Jmjd2c depletion leads to ES cell differentiation, which is accompanied by a reduction in the expression of ES cell-specific genes and an induction of lineage marker genes. Jmjd1a demethylates H3K9Me2 at the promoter regions of Tcl1, Tcfcp2l1, and Zfp57 and positively regulates the expression of these pluripotency-associated genes. Jmjd2c acts as a positive regulator for Nanog, which encodes for a key transcription factor for self-renewal in ES cells. We further demonstrate that Jmjd2c is required to reverse the H3K9Me3 marks at the Nanog promoter region and consequently prevents transcriptional repressors HP1 and KAP1 from binding. Our results connect the ES cell transcription circuitry to chromatin modulation through H3K9 demethylation in pluripotent cells

    Re-entering the pluripotent state from blood lineage: promises and pitfalls of blood reprogramming

    No full text
    Contains fulltext : 214027.pdf (publisher's version ) (Closed access)Blood reprogramming, in which induced pluripotent stem cells (iPSCs) are derived from haematopoietic lineages, has rapidly advanced over the past decade. Since the first report using human blood, haematopoietic cell types from various sources, such as the peripheral bone marrow and cord blood, have been successfully reprogrammed. The volume of blood required has also decreased, from around tens of millilitres to a single finger-prick drop. Besides, while early studies were limited to reprogramming methods relying on viral integration, nonintegrating reprogramming systems for blood lineages have been subsequently established. Together, these improvements have made feasible the future clinical applications of blood-derived iPSCs. Here, we review the progress in blood reprogramming from various perspectives, including the starting materials and subsequent reprogramming strategies. We also discuss the downstream applications of blood-derived iPSCs, highlighting their clinical value in terms of disease modelling and therapeutic development
    corecore