195 research outputs found

    Molecular mechanisms of acute radiation intestinal injury and its control

    Get PDF
    腸管は代表的な放射線高感受性組織であり、放射線治療においては腹部・骨盤領域の腫瘍への処方線量を制限するリスク臓器である。高線量の放射線により腸組織が損傷を受けると腸上皮幹細胞の喪失を誘発するが、この過程はp53 によって制御される陰窩細胞死過程と炎症性の免疫応答による増悪過程の2 段階のプロセスからなることが明らかにされつつある。本総説では、それぞれの過程の分子機構について概説し、急性放射線腸管障害を効果的に制御する方法について考察する。The intestinal tract is a typical radiosensitive tissue and a risk organ in radiotherapy that limits the prescribed dose to tumors in the abdominal and pelvic regions. High-dose radiation damage to intestinal tissue induces loss of intestinal stem cells, and it is becoming clear that this process consists of two steps: a crypt cell death process regulated by p53 and an exacerbation process by inflammatory immune responses. In this review, we will outline the molecular mechanisms of each process and discuss how to effectively control acute radiation intestinal injury

    Biological neurons act as generalization filters in reservoir computing

    Full text link
    Reservoir computing is a machine learning paradigm that transforms the transient dynamics of high-dimensional nonlinear systems for processing time-series data. Although reservoir computing was initially proposed to model information processing in the mammalian cortex, it remains unclear how the non-random network architecture, such as the modular architecture, in the cortex integrates with the biophysics of living neurons to characterize the function of biological neuronal networks (BNNs). Here, we used optogenetics and fluorescent calcium imaging to record the multicellular responses of cultured BNNs and employed the reservoir computing framework to decode their computational capabilities. Micropatterned substrates were used to embed the modular architecture in the BNNs. We first show that modular BNNs can be used to classify static input patterns with a linear decoder and that the modularity of the BNNs positively correlates with the classification accuracy. We then used a timer task to verify that BNNs possess a short-term memory of ~1 s and finally show that this property can be exploited for spoken digit classification. Interestingly, BNN-based reservoirs allow transfer learning, wherein a network trained on one dataset can be used to classify separate datasets of the same category. Such classification was not possible when the input patterns were directly decoded by a linear decoder, suggesting that BNNs act as a generalization filter to improve reservoir computing performance. Our findings pave the way toward a mechanistic understanding of information processing within BNNs and, simultaneously, build future expectations toward the realization of physical reservoir computing systems based on BNNs.Comment: 31 pages, 5 figures, 3 supplementary figure

    Local instability signatures in ALMA observations of dense gas in NGC7469

    Get PDF
    We present an unprecedented measurement of the disc stability and local instability scales in the luminous infrared Seyfert 1 host, NGC7469, based on ALMA observations of dense gas tracers and with a synthesized beam of 165 x 132 pc. While we confirm that non-circular motions are not significant in redistributing the dense interstellar gas in this galaxy, we find compelling evidence that the dense gas is a suitable tracer for studying the origin of its intensely high-mass star forming ring-like structure. Our derived disc stability parameter accounts for a thick disc structure and its value falls below unity at the radii in which intense star formation is found. Furthermore, we derive the characteristic instability scale and find a striking agreement between our measured scale of ~ 180 pc, and the typical sizes of individual complexes of young and massive star clusters seen in high-resolution images.Comment: Accepted for publication in ApJ Letter

    Rapid reduction in black carbon emissions from China: evidence from 2009–2019 observations on Fukue Island, Japan

    Get PDF
    A long-term, robust observational record of atmospheric black carbon (BC) concentrations at Fukue Island for 2009–2019 was produced by unifying the data from a continuous soot monitoring system (COSMOS) and a Multi-Angle Absorption Photometer (MAAP). This record was then used to analyze emission trends from China. We identified a rapid reduction in BC concentrations of (−5.8±1.5) % yr−1 or −48 % from 2010 to 2018. We concluded that an emission change of (−5.3±0.7) % yr−1, related to changes in China of as much as −4.6 % yr−1, was the main underlying driver. This evaluation was made after correcting for the interannual meteorological variability (IAV) by using the regional atmospheric chemistry model simulations from the Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models (collectively WRF/CMAQ) with the constant emissions. This resolves the current fundamental disagreements about the sign of the BC emissions trend from China over the past decade as assessed from bottom-up emission inventories. Our analysis supports inventories reflecting the governmental clean air actions after 2010 (e.g., MEIC1.3, ECLIPSE versions 5a and 6b, and the Regional Emission inventory in ASia (REAS) version 3.1) and recommends revisions to those that do not (e.g., Community Emissions Data System – CEDS). Our estimated emission trends were fairly uniform across seasons but diverse among air mass origins. Stronger BC reductions, accompanied by a reduction in carbon monoxide (CO) emissions, occurred in regions of south-central East China, while weaker BC reductions occurred in north-central East China and northeastern China. Prior to 2017, the BC and CO emissions trends were both unexpectedly positive in northeastern China during winter months, which possibly influenced the climate at higher latitudes. The pace of the estimated emissions reduction over China surpasses the Shared Socioeconomic Pathways (SSPs with reference to SSP1, specifically) scenarios for 2015–2030, which suggests highly successful emission control policies. At Fukue Island, the BC fraction of fine particulate matter (PM2.5) also steadily decreased over the last decade. This suggests that reductions in BC emissions started without significant delay when compared to other pollutants such as NOx and SO2, which are among the key precursors of scattering PM2.5

    Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) VIII. A less biased view of the early co-evolution of black holes and host galaxies

    Get PDF
    We present ALMA [CII] line and far-infrared (FIR) continuum observations of three z>6z > 6 low-luminosity quasars (M1450>25M_{\rm 1450} > -25) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [CII] line was detected in all three targets with luminosities of (2.49.5)×108 L(2.4 - 9.5) \times 10^8~L_\odot, about one order of magnitude smaller than optically luminous (M145025M_{\rm 1450} \lesssim -25) quasars. The FIR continuum luminosities range from <9×1010 L< 9 \times 10^{10}~L_\odot (3σ\sigma limit) to 2×1012 L\sim 2 \times 10^{12}~L_\odot, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [CII]/FIR luminosity ratios similar to local star-forming galaxies. Using the [CII]-based dynamical mass (MdynM_{\rm dyn}) as a surrogate for bulge stellar mass (MbulgeM_{\rm bulge}), we find that a significant fraction of low-luminosity quasars are located on or even below the local MBHMbulgeM_{\rm BH} - M_{\rm bulge} relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes and their hosts in a less biased way. Almost all of the quasars presented in this work are growing their black hole mass at much higher pace at z6z \sim 6 than the parallel growth model, in which supermassive black holes and their hosts grow simultaneously to match the local MBHMbulgeM_{\rm BH} - M_{\rm bulge} relation at all redshifts. As the low-luminosity quasars appear to realize the local co-evolutionary relation even at z6z \sim 6, they should have experienced vigorous starbursts prior to the currently observed quasar phase to catch up with the relation.Comment: 19 pages, 11 figures, 4 tables. Accepted for publication in Publications of the Astronomical Society of Japan (PASJ

    SXDF-ALMA 2 Arcmin^2 Deep Survey: Resolving and Characterizing the Infrared Extragalactic Background Light Down to 0.5 mJy

    Full text link
    We present a multi-wavelength analysis of five submillimeter sources (S_1.1mm = 0.54-2.02 mJy) that were detected during our 1.1-mm-deep continuum survey in the SXDF-UDS-CANDELS field (2 arcmin^2, 1sigma = 0.055 mJy beam^-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ~ 4.1^{+5.4}_{-3.0} Jy deg^{-2}, which corresponds to ~ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multi-wavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR ~ 1e12 L_sun or SFR ~ 100 M_sun yr^{-1}). By fitting the spectral energy distributions (SEDs) at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (z_photo) and stellar masses (M_*): z_photo ~ 1.3-2.5, M_* ~ (3.5-9.5)e10 M_sun. We also derived their star formation rates (SFRs) and specific SFRs (sSFRs) as ~ 30-200 M_sun yr^{-1} and ~ 0.8-2 Gyr^{-1}, respectively. These values imply that they are main-sequence star-forming galaxies.Comment: PASJ accepted, 15 pages, 6 figures, 2 table

    Submillimeter ALMA Observations of the Dense Gas in the Low-Luminosity Type-1 Active Nucleus of NGC 1097

    Full text link
    We present the first 100 pc scale view of the dense molecular gas in the central ~ 1.3 kpc region of the type-1 Seyfert NGC 1097 traced by HCN (J=4-3) and HCO+ (J=4-3) lines afforded with ALMA band 7. This galaxy shows significant HCN enhancement with respect to HCO+ and CO in the low-J transitions, which seems to be a common characteristic in AGN environments. Using the ALMA data, we study the characteristics of the dense gas around this AGN and search for the mechanism of HCN enhancement. We find a high HCN (J=4-3) to HCO+ (J=4-3) line ratio in the nucleus. The upper limit of the brightness temperature ratio of HCN (v2=1^{1f}, J=4-3) to HCN (J=4-3) is 0.08, which indicates that IR pumping does not significantly affect the pure rotational population in this nucleus. We also find a higher HCN (J=4-3) to CS (J=7-6) line ratio in NGC 1097 than in starburst galaxies, which is more than 12.7 on the brightness temperature scale. Combined from similar observations from other galaxies, we tentatively suggest that this ratio appears to be higher in AGN-host galaxies than in pure starburst ones similar to the widely used HCN to HCO+ ratio. LTE and non-LTE modeling of the observed HCN and HCO+ lines using J=4-3 and 1-0 data from ALMA, and J=3-2 data from SMA, reveals a high HCN to HCO+ abundance ratio (5 < [HCN]/[HCO+] < 20: non-LTE analysis) in the nucleus, and that the high-J lines (J=4-3 and 3-2) are emitted from dense (10^{4.5} < n_H2 [/cc] < 10^6), hot (70 < Tkin [K] < 550) regions. Finally we propose that the high temperature chemistry is more plausible to explain the observed enhanced HCN emission in NGC 1097 than the pure gas phase PDR/XDR chemistry.Comment: 28 pages, 17 figures, 10 tables. Accepted to PAS

    SXDF-ALMA 1.5 arcmin^2 deep survey. A compact dusty star-forming galaxy at z=2.5

    Get PDF
    We present first results from the SXDF-ALMA 1.5 arcmin^2 deep survey at 1.1 mm using Atacama Large Millimeter Array (ALMA). The map reaches a 1sigma depth of 55 uJy/beam and covers 12 Halpha-selected star-forming galaxies at z = 2.19 or z=2.53. We have detected continuum emission from three of our Halpha-selected sample, including one compact star-forming galaxy with high stellar surface density, NB2315-07. They are all red in the rest-frame optical and have stellar masses of log (M*/Msun)>10.9 whereas the other blue, main-sequence galaxies with log(M*/Msun)=10.0-10.8 are exceedingly faint, <290 uJy (2sigma upper limit). We also find the 1.1 mm-brightest galaxy, NB2315-02, to be associated with a compact (R_e=0.7+-0.1 kpc), dusty star-forming component. Given high gas fraction (44^{+20}_{-8}% or 37^{+25}_{-3}%) and high star formation rate surface density (126^{+27}_{-30} Msun yr^{-1}kpc^{-2}), the concentrated starburst can within less than 50^{+12}_{-11} Myr build up a stellar surface density matching that of massive compact galaxies at z~2, provided at least 19+-3% of the total gas is converted into stars in the galaxy centre. On the other hand, NB2315-07, which already has such a high stellar surface density core, shows a gas fraction (23+-8%) and is located in the lower envelope of the star formation main-sequence. This compact less star-forming galaxy is likely to be in an intermediate phase between compact dusty star-forming and quiescent galaxies.Comment: 6 pages, 4 figures, 1 table, accepted for publication in ApJ
    corecore