115 research outputs found

    On A Simpler and Faster Derivation of Single Use Reliability Mean and Variance for Model-Based Statistical Testing

    Get PDF
    Markov chain usage-based statistical testing has proved sound and effective in providing audit trails of evidence in certifying software-intensive systems. The system end-toend reliability is derived analytically in closed form, following an arc-based Bayesian model. System reliability is represented by an important statistic called single use reliability, and defined as the probability of a randomly selected use being successful. This paper continues our earlier work on a simpler and faster derivation of the single use reliability mean, and proposes a new derivation of the single use reliability variance by applying a well-known theorem and eliminating the need to compute the second moments of arc failure probabilities. Our new results complete a new analysis that could be shown to be simpler, faster, and more direct while also rendering a more intuitive explanation. Our new theory is illustrated with three simple Markov chain usage models with manual derivations and experimental results

    A Simpler and More Direct Derivation of System Reliability Using Markov Chain Usage Models

    Get PDF
    Markov chain usage-based statistical testing has been around for more than two decades, and proved sound and effective in providing audit trails of evidence in certifying software-intensive systems. The system end-to-end reliability is derived analytically in closed form, following an arc-based Bayesian model. System reliability is represented by an important statistic called single use reliability, and defined as the probability of a randomly selected use being successful. This paper reviews the analytical derivation of the single use reliability mean, and proposes a simpler, faster, and more direct way to compute the expected value that renders an intuitive explanation. The new derivation is illustrated with two examples

    Circular RNAs and Their Emerging Roles in Immune Regulation

    Get PDF
    Circular ribonucleic acid (RNA) molecules (circRNAs) are covalently closed loop RNA molecules with no 5′ end caps or 3′ poly (A) tails, which are generated by back-splicing. Originally, circRNAs were considered to be byproducts of aberrant splicing. However, in recent years, development of high-throughput sequencing has led to gradual recognition of functional circRNAs, and increasing numbers of studies have elucidated their roles in cancer, neurologic diseases, and cardiovascular disorders. Nevertheless, studies of the functions of circRNAs in the immune system are relatively scarce. In this review, we detail relevant research on the biogenesis and classification of circRNAs, describe their functional mechanisms and approaches to their investigation, and summarize recent studies of circRNA function in the immune system

    Design of Plant Protection UAV Variable Spray System Based on Neural Networks

    Get PDF
    Recently, unmanned aerial vehicles (UAVs) have rapidly emerged as a new technology in the fields of plant protection and pest control in China. Based on existing variable spray research, a plant protection UAV variable spray system integrating neural network based decision making is designed. Using the existing data on plant protection UAV operations, combined with artificial neural network (ANN) technology, an error back propagation (BP) neural network model between the factors affecting droplet deposition is trained. The factors affecting droplet deposition include ambient temperature, ambient humidity, wind speed, flight speed, flight altitude, propeller pitch, nozzles pitch and prescription value. Subsequently, the BP neural network model is combined with variable rate spray control for plant protection UAVs, and real-time information is collected by multi-sensor. The deposition rate is determined by the neural network model, and the flow rate of the spray system is regulated according to the predicted deposition amount. The amount of droplet deposition can meet the prescription requirement. The results show that the training variance of the ANN is 0.003, and thus, the model is stable and reliable. The outdoor tests show that the error between the predicted droplet deposition and actual droplet deposition is less than 20%. The ratio of droplet deposition to prescription value in each unit is approximately equal, and a variable spray operation under different conditions is realized

    Design of Plant Protection UAV Variable Spray System Based on Neural Networks

    Get PDF
    Recently, unmanned aerial vehicles (UAVs) have rapidly emerged as a new technology in the fields of plant protection and pest control in China. Based on existing variable spray research, a plant protection UAV variable spray system integrating neural network based decision making is designed. Using the existing data on plant protection UAV operations, combined with artificial neural network (ANN) technology, an error back propagation (BP) neural network model between the factors affecting droplet deposition is trained. The factors affecting droplet deposition include ambient temperature, ambient humidity, wind speed, flight speed, flight altitude, propeller pitch, nozzles pitch and prescription value. Subsequently, the BP neural network model is combined with variable rate spray control for plant protection UAVs, and real-time information is collected by multi-sensor. The deposition rate is determined by the neural network model, and the flow rate of the spray system is regulated according to the predicted deposition amount. The amount of droplet deposition can meet the prescription requirement. The results show that the training variance of the ANN is 0.003, and thus, the model is stable and reliable. The outdoor tests show that the error between the predicted droplet deposition and actual droplet deposition is less than 20%. The ratio of droplet deposition to prescription value in each unit is approximately equal, and a variable spray operation under different conditions is realized

    Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography

    Get PDF
    Background: The technology of cotton defoliation is essential for mechanical cotton harvesting. Agricultural unmanned aerial vehicle (UAV) spraying has the advantages of low cost, high efficiency and no mechanical damage to cotton and has been favored and widely used by cotton planters in China. However, there are also some problems of low cotton defoliation rates and high impurity rates caused by unclear spraying amounts of cotton defoliants. The chemical rate recommendation and application should be based upon crop canopy volume rather than on land area. Plant height and leaf area index (LAI) is directly connected to plant canopy structure. Accurate dynamic monitoring of plant height and LAI provides important information for evaluating cotton growth and production. The traditional method to obtain plant height and LAI was s a time-consuming and labor-intensive task. It is very difficult and unrealistic to use the traditional measurement method to make the temporal and spatial variation map of plant height and LAI of large cotton fields. With the application of UAV in agriculture, remote sensing by UAV is currently regarded as an effective technology for monitoring and estimating plant height and LAI. Results: In this paper, we used UAV RGB photos to build dense point clouds to estimate cotton plant height and LAI following cotton defoliant spraying. The results indicate that the proposed method was able to dynamically monitor the changes in the LAI of cotton at different times. At 3 days after defoliant spraying, the correlation between the plant height estimated based on the constructed dense point cloud and the measured plant height was strong, with R2 and RMSE values of 0.962 and 0.913, respectively. At 10 days after defoliant spraying, the correlation became weaker over time, with R2 and RMSE values of 0.018 and 0.027, respectively. Comparing the actual manually measured LAI with the estimated LAI based on the dense point cloud, the R2 and RMSE were 0.872 and 0.814 and 0.132 and 0.173 at 3 and 10 days after defoliant spraying, respectively. Conclusions: Dense point cloud construction based on UAV remote sensing is a potential alternative to plant height and LAI estimation. The accuracy of LAI estimation can be improved by considering both plant height and planting density

    The signal pathways and treatment of cytokine storm in COVID-19

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) pandemic has become a global crisis and is more devastating than any other previous infectious disease. It has affected a significant proportion of the global population both physically and mentally, and destroyed businesses and societies. Current evidence suggested that immunopathology may be responsible for COVID-19 pathogenesis, including lymphopenia, neutrophilia, dysregulation of monocytes and macrophages, reduced or delayed type I interferon (IFN-I) response, antibody-dependent enhancement, and especially, cytokine storm (CS). The CS is characterized by hyperproduction of an array of pro-inflammatory cytokines and is closely associated with poor prognosis. These excessively secreted pro-inflammatory cytokines initiate different inflammatory signaling pathways via their receptors on immune and tissue cells, resulting in complicated medical symptoms including fever, capillary leak syndrome, disseminated intravascular coagulation, acute respiratory distress syndrome, and multiorgan failure, ultimately leading to death in the most severe cases. Therefore, it is clinically important to understand the initiation and signaling pathways of CS to develop more effective treatment strategies for COVID-19. Herein, we discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved. We also discuss the induction, function, downstream signaling, and existing and potential interventions for targeting these cytokines or related signal pathways. We believe that a comprehensive understanding of CS in COVID-19 will help to develop better strategies to effectively control immunopathology in this disease and other infectious and inflammatory diseases

    Cholesterol 25-hydroxylase negatively regulates porcine intestinal coronavirus replication by the production of 25-hydroxycholesterol.

    Full text link
    peer reviewedCholesterol 25-hydroxylase (CH25H) has been shown lately to be a host restriction factor that encodes an enzyme, which catalyzes the oxidized form of cholesterol to 25-hydroxycholesterol (25HC). A series of studies have shown that 25HC activity in hosts plays a vital role in inhibiting viral infection. In this study, we explored the antiviral effect of CH25H and 25HC on porcine epidemic diarrhea virus (PEDV), which causes high mortality rates in newborn piglets with severe diarrhea, and considerable financial loss in the swine industry worldwide. Our results showed that PEDV infection downregulated the expression of CH25H in Vero cells. An overexpression and knockdown assay indicated that CH25H has significant antiviral action against PEDV, and a CH25H mutant (CH25H-M) that lacks hydroxylase activity also retains antiviral activity to a lesser extent. Furthermore, 25HC had a broad-spectrum antiviral effect against different PEDV strains by blocking viral entry. In addition, CH25H and 25HC inhibited the replication of porcine transmissible gastroenteritis virus (TGEV). Taken together, CH25H as a natural host restriction factor could inhibit PEDV and TGEV infection

    Magic auxeticity angle of graphene

    Get PDF
    Solids exhibit transverse shrinkage when they are stretched, except auxetics that abnormally demonstrate lateral expansion instead. Graphene possesses the unique normal-auxeticity (NA) transition when it is stretched along the armchair direction but not along the zigzag direction. Here we report on the anisotropic temperature-dependent NA transitions in strained graphene using molecular dynamics simulations. The critical strain where the NA transition occurs increases with respect to an increase in the tilt angle deviating from armchair direction upon uniaxial loading. The magic angle for the NA transition is 10.9°, beyond which the critical strain is close to fracture strain. In addition, the critical strain decreases with an increasing temperature when the tilt angle is smaller than the NA magic angle. Our results shed lights on the unprecedented nonlinear dimensional response of graphene to the large mechanical loading at various temperatures

    Multilevel and spatial analysis of syphilis in Shenzhen, China, to inform spatially targeted control measures

    Get PDF
    The present study investigates the varied spatial distribution of syphilis cases in Shenzhen, China, and explores the individual-, neighbourhood- and district-level factors affecting the distribution
    • …
    corecore