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based on unmanned aerial vehicle (UAV) 
oblique photography
Jinyong Wu1,2, Sheng Wen1,2*  , Yubin Lan2,3, Xuanchun Yin1,2, Jiantao Zhang2,4 and Yufeng Ge5 

Abstract 

Background: The technology of cotton defoliation is essential for mechanical cotton harvesting. Agricultural 
unmanned aerial vehicle (UAV) spraying has the advantages of low cost, high efficiency and no mechanical damage 
to cotton and has been favored and widely used by cotton planters in China. However, there are also some problems 
of low cotton defoliation rates and high impurity rates caused by unclear spraying amounts of cotton defoliants. The 
chemical rate recommendation and application should be based upon crop canopy volume rather than on land area. 
Plant height and leaf area index (LAI) is directly connected to plant canopy structure. Accurate dynamic monitoring 
of plant height and LAI provides important information for evaluating cotton growth and production. The traditional 
method to obtain plant height and LAI was s a time-consuming and labor-intensive task. It is very difficult and unreal-
istic to use the traditional measurement method to make the temporal and spatial variation map of plant height and 
LAI of large cotton fields. With the application of UAV in agriculture, remote sensing by UAV is currently regarded as an 
effective technology for monitoring and estimating plant height and LAI.

Results: In this paper, we used UAV RGB photos to build dense point clouds to estimate cotton plant height and LAI 
following cotton defoliant spraying. The results indicate that the proposed method was able to dynamically moni-
tor the changes in the LAI of cotton at different times. At 3 days after defoliant spraying, the correlation between 
the plant height estimated based on the constructed dense point cloud and the measured plant height was strong, 
with R2 and RMSE values of 0.962 and 0.913, respectively. At 10 days after defoliant spraying, the correlation became 
weaker over time, with R2 and RMSE values of 0.018 and 0.027, respectively. Comparing the actual manually measured 
LAI with the estimated LAI based on the dense point cloud, the R2 and RMSE were 0.872 and 0.814 and 0.132 and 
0.173 at 3 and 10 days after defoliant spraying, respectively.

Conclusions: Dense point cloud construction based on UAV remote sensing is a potential alternative to plant height 
and LAI estimation. The accuracy of LAI estimation can be improved by considering both plant height and planting 
density.

Keywords: Crop height, Leaf area index, Plant phenotyping, UAV, Structure from motion

Background
Cotton is one of the most labor-intensive crops; in addi-
tion to sowing, pest control and harvesting production 
links need to rely on a large amount of labor consump-
tion [1]. Due to the acceleration of China’s economic 
development and urbanization, labor costs are rising rap-
idly. Currently, China’s cotton planting and labor costs 
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account for more than half of the total cost, approxi-
mately 50.9% , and the unit area labor cost was approxi-
mately 69.3% higher than that of the United States [2].

Mechanized cotton harvesting is a significant approach 
to minimize labor intensity and cotton planting cost, 
among which cotton defoliation and ripening are impor-
tant prerequisites and key links to realize mechanical cot-
ton harvesting [3]. Because traditional ground machinery 
spraying cotton defoliants easily causes damage to cotton 
fields and boll loss [see Additional file 1(a)], agricultural 
unmanned aerial vehicle (UAV) spraying has the advan-
tages of low cost, high efficiency and no damage to cot-
ton [see Additional file 1(b)] and has become one of the 
important defoliant application devices in China’s cotton 
growing areas [4].

With the rise of new spray equipment in recent years, 
plant protection UAVs that spray cotton defoliants also 
lack specific operation procedures [5]. The application 
volume of plant protection UAVs mainly relies on the 
operator’s experience for selection, which is generally 
15-30 L/ha [6], and it is often difficult to achieve on-
demand spraying. The defoliation effect of cotton is not 
satisfactory when the spraying volume is too small. The 
higher concentration of the liquid can lead to scorched 
leaves and hanging branches in cotton [see Additional 
file 1(c)]. 2. The amount of chemical defoliation used by 
agricultural UAVs should be calculated based on cot-
ton canopy volume rather than land area [7]. To ensure 
appropriate defoliation application, the analysis based on 
the distribution of plant height and LAI of cotton in the 
field should be performed.

The leaf area index (LAI) is a biophysical parameter 
in crop phenotypes that refers to the total area of veg-
etation components (stems, leaves, flowers, fruits, and 
so on) per unit of land surface area. It is closely related 
to how plants use light energy and is an important bio-
physical parameter in crop phenotypes [8, 9]. The LAI is 
affected by factors such as crop varieties, growing age, 
nutrient conditions and plant spacing [10]. In precision 
agriculture, LAI is closely related to plant canopy struc-
ture, which is a useful index for crop growth diagnosis, 
biomass estimation and yield prediction [11, 12]. Timely 
monitoring of the change in the LAI of cotton after spray-
ing Cotton Defoliant plays an important role in the study 
of cotton plant defoliation, bolting and yield prediction. 
Obtaining detailed LAI distribution maps of cotton fields 
quickly and accurately is very valuable to farmers. These 
maps can be used by farmers to determine crop growth 
status based on the existing spatial and temporal LAI 
information to optimize subsequent crop management 
decisions [13]. Therefore, accurate assessment of the LAI 
is crucial in cotton planting management, even if it is a 
time-consuming and labor-intensive process.

The traditional measurement method for LAI is not 
only time-consuming and laborious but also easily affects 
the accuracy of data due to measurement errors [14, 
15]. In addition, it easily causes artificial damage to crop 
plants and affects the normal growth of crops [16]. How 
to estimate LAI rapidly and nondestructively has become 
a popular research direction of many researchers [17]. 
In recent decades, the improvement of unmanned aerial 
vehicle technology and its application in remote sensing 
have made remote sensing technology a promising non-
destructive technology [18–21]. Remote sensing has been 
shown to have great potential in estimating LAI for crops 
and has been applied to rice [22], wheat [23], maize [24] 
and cotton [25].

Modern technologies based on near-end remote sens-
ing for LAI estimation, such as digital cameras [26] or 
RGB fisheye lens cameras [27], which can ensure the 
reliability and speed of LAI estimation while also real-
izing the estimation of LAI for individual communities. 
In this case, remote sensing is an advantageous technique 
that can be used to quickly estimate the LAI of crops, for 
example, by airborne hyperspectral or multispectral cam-
eras. Different from satellite remote sensing, near-end 
remote sensing can quickly produce reliable and accu-
rate farmland information maps according to the actual 
crop growth status and different spectral reflectance of 
crops [28]. UAV remote sensing uses small aircraft to 
obtain remote sensing information. Due to its functional 
diversity and adaptability to user needs, field forms and 
applications, UAV remote sensing is widely used in pre-
cision agriculture applications, providing high-resolution 
images with space and time. Comba et al. [29] proposed 
an unsupervised algorithm for vineyard detection and 
grape row feature evaluation based on 3D point cloud 
processing generated by UAV multispectral images, 
which achieved good results in the automatic detection 
of vineyards, as well as the evaluation of grape row direc-
tion and row spacing. Tao Huilin et al. [30] extracted the 
spectrum based on the UAV hyperspectral image and 
partial least squares regression method, constructed 
the estimation model of plant height and LAI of win-
ter wheat, and proved the reliability of the estimation of 
plant height and LAI. However, the widespread use of 
professional spectroscopic cameras is limited due to their 
high cost and complicated data processing procedures 
[31, 32].

With the evolution of realistic 3D crop model crea-
tion technologies, a new method for crop phenotyping 
research has emerged. As a large point cloud dataset, 
the 3D crop model contains higher phenotypic param-
eters of crop plants, which can be obtained directly by 
lidar scanning or from multispectral and visible images 
by photogrammetry and computer vision methods [13, 
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33]. In recent years, a low-cost consumer UAV system 
composed of light UAVs and RGB cameras has received 
extensive attention in crop growth monitoring due to its 
low cost and ease of operation, which has shown high 
potential in practical applications [34]. The RGB image 
of the crop canopy obtained by the UAV was used to 
extract the digital surface model (DSM) by generating 
point clouds through the Structure from Motion (SfM) 
method, which can estimate the LAI and other growth 
indicators [35, 36]. Therefore, there is great interest in 
using this low-cost method to predict plant height and 
LAI. A number of studies have confirmed the reliability 
and effectiveness of evaluating crop phenotypes from 
dense 3D point clouds. Ivanov et  al. [37] were the first 
to estimate the leaf area of maize using the SfM method, 
using stereo equipment and having to manually segment 
the leaves in the image. Mathews [38] created a 3D point 
cloud model using the SfM method. A simple point cloud 
processing method was proposed to estimate the LAI 
distribution of large vineyards. However, the estimated 
results were susceptible to the influence of low-density 
point clouds.

Han et  al. [39] used the UAV to acquire time-series 
images for 3D reconstruction of field breeding plots and 
found that the height of plants determined by the UAV 
platform was closely related to the height measured man-
ually. For the first time, fuzzy C-means clustering and the 
set intersection operation were used to analyze the time 
profile, and multitime sequence analysis of crop field 
shape was realized. Fawcett  et al. [40] made an SfM point 
cloud model with images in an oil palm forest and used 
local height maxima to evaluate automatic canopy iden-
tification with better canopy segmentation results. It is 
quite significant to improve the existing methods to fur-
ther raise the efficiency and practical application of crop 
parameter acquisition.

Zermas et  al. [41] found that the 3D maize model 
reconstructed based on the SfM method can automati-
cally extract the phenotypic characteristics of a single 
plant with high precision. Zermas  et  al. realized that 
the LAI was estimated with 92.5% accuracy and that the 
height of a single corn plant was estimated with 89.2% 
accuracy. Previous studies have confirmed the accuracy 
and validity of estimating crop phenotypic parameters 
from point clouds obtained by using the SfM method 
[42, 43], which creates the possibility of achieving low-
cost prediction of plant height and LAI for large area 
crops [44]. However, the method used still has limita-
tions in the extended application, and the generalization 
ability needs to be improved. For example, due to the 
complexity of field environments and crop canopies and 
the characteristics of imaging systems, images contain-
ing phenotypic information can vary greatly in terms of 

resolution, imaging quality, and detail richness, which 
also leads to obstacles in scaling up existing methods. 
Therefore, the point cloud model obtained by the SfM 
method to retrieve the structural parameters of field cot-
ton crops has great potential in precision agriculture.

The overall goal of this work was to evaluate a low-
cost UAV method for the rapid acquisition of phenotypic 
information and 3D point cloud analysis of cotton to 
monitor cotton plant height and LAI under field condi-
tions. To enrich the point cloud information, the RGB 
image was obtained by simulating a five-way lens by per-
forming multiple flight missions and then processing the 
3D dense point cloud of cotton under field conditions 
obtained by the SfM method. Based on the dense point 
cloud. The specific aim of this work is as follows: 

(1) Combining DSM and manual sampling methods for 
measuring plant heights to derive ground elevations 
within the sampled plots. The digital ground eleva-
tion map of the test plot was obtained indirectly, 
and the cotton plant height of nonsampling points 
was estimated by using the digital ground elevation 
map.

(2) A 3D point cloud of cotton in the field was rap-
idly constructed from UAV images, which can be 
used to extract the physical parameters of the crop 
canopy. A multivariate linear model was used to 
describe and model the relationship between the 
defined crop canopy and LAI, which was used 
to estimate LAI. The LAI obtained with the LAI 
instrument was compared to verify the reliability 
and accuracy of the estimated LAI.

(3) A graph of LAI over time (10 days after spraying 
cotton defoliant) was drawn to explore the relation-
ship between plant height as well as LAI and the 
effect of cotton defoliant spraying.

Methods
Experimental site
The experiment was conducted at a cotton breeding 
base from September 27 to October 7, 2020, in Wudi 
County, Binzhou City, Shandong Province, China. The 
experimental site is at latitude 37.948182◦ N, longitude 
117.841890◦ E, with an average altitude of 4 meters, as 
shown in Fig. 1a, c. Figure 1c also shows the distribution 
of ground control points and sampling areas. This area is 
a traditional cotton growing area with a temperate mon-
soon continental climate. The size of the experimental 
area was 315 meters × 46 meters. Considering the limited 
endurance of the UAV, the final selected test area was 
40 meters × 20 meters, and weeds in the test area were 
removed. The cotton variety of the test plot was Lu 54, 
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planted in late April 2020, with a planting row spacing of 
60 cm. When the experiment was conducted, the cotton 
was in the early stage of bouncing, and the average plant 
height was 60 cm.

Measurement of field data
To make the LAI of the experimental cotton field show 
obvious changes in a short period of time, a plant pro-
tection UAV (P30 2018, Guangzhou Jifei Technology 
Co., Ltd., China) was used to spray a cotton defoliant 
on the entire cotton field before the start of the experi-
ment. After spraying the cotton defoliant, the cotton 
leaves gradually began to fall off, and the time for bolls to 
bloom and spit out was shortened. The flight parameters 
and spraying parameters of the plant protection UAV are 
shown in Table 1. Figure 2 shows the UAV being used to 
spray cotton defoliant, and Fig. 3a shows the UAV used 
for the spraying operation. The experimental field where 
the spraying operation was completed is shown in Fig. 1b.

Measurement of canopy height and LAI of cotton in the field
From the second day after the cotton defoliant was 
sprayed, the LAI of the test area was uniformly sampled 
and measured for 10 consecutive days, and the RGB 
image of the test area was acquired by a UAV equipped 
with a digital camera. The field LAI was measured 
using a LAI instrument (Chengdu University of Science 
and Technology, China); see Fig.  3d. The LAI meter is 

a handheld device with a fish-eye lens at the front end. 
The image taken by the fish-eye lens was imported 
into the software for analysis to obtain the LAI of the 
measuring point [45]. In the whole test plot, 128 small 
areas of 1 × 1 m were uniformly selected to measure LAI 
and the highest plant height in the small area (shown 
in Fig. 1c, d. RTK equipment (UBase, Hi - Target Navi-
gation technology Co., China) was used to accurately 
record the sampling locations, and the horizontal and 
vertical errors of the RTK equipment were within 1 cm 
and 2 cm, respectively. The RTK equipment is shown 

Fig. 1 a Location of the research site. b Experimental cotton field after defoliant spraying. c, d Location distribution of LAI measurement points. e 
Coordinate information measurement of ground markers

Table 1 Flight parameters and spraying parameters of UAV

Name Parameter

Model of UAV P30 2018

Flying height 1.5 m

Flying speed 3 m/s

Volume median diameter (VMD) 110 µm

Type and dosage of defoliant Xinthali (50% phe-
nylene · ethylene 
suspending agent) 
270 mL/ha

Type and dosage of synergist Fatty alcohol poly-
oxyethylene ether 
sulfonat 180 mL/ha

Spraying amount of mixed liquid 18 L/ha
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in Fig. 3c, and the distribution of measured locations is 
shown in Fig.  1c, d. Since the cotton at this time was 
already in the mature stage and the height does not 
change any more, the canopy height was only measured 
once, and the highest plant in the sampling area was 
selected for measurement. The measurement result of 
plant height is shown in Fig. 4a, and the measurement 

result of the LAI on the third day after application is 
shown in Fig. 4b.

Collection of UAV‑based canopy RGB image
The UAV used in the test was DJI Phantom 4 pro V2.0 
(Shenzhen DJI Innovation Technology Co., Ltd., China), 
which is a low-cost consumer-grade quadrotor UAV 
equipped with a 1-inch 20 million pixel image sensor, a 

Fig. 2 The spraying cotton defoliant operation process

Fig. 3 Test equipment. a P30 2018 UA V actual diagram. b A single-lens UA V for acquiring images. c RTK equipment. d LAI meter
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system composed of digital cameras (shown in Fig.  3b. 
Before acquiring UAV images for the first time, 9 ground 
control points were fixed on the test plot to perform 
postcalibration of UAV images. The layout of the ground 
control points is shown in Fig. 1c. The coordinate infor-
mation of the ground control point was obtained by RTK 
equipment, as shown in Fig. 1e. Alizure (Shenzhen Zhuke 
Innovation Technology Co., Ltd., China) software was 
used to plan the flight parameters of the UAV. The flight 
altitude was 10 meters, the flight speed was 1.5 m/s, and 
the image forward overlap rate and side overlap rate were 
both set to 80% . The flight time was selected at noon on 
a sunny day (10:00-13:00) to avoid the influence of light 
on the test results. To obtain high-precision results, the 
five-way flight mode in Alizure software was used to sim-
ulate the effect of the five-way lens. The five-way lens can 
simultaneously acquire images from 5 different angles 
every time it shoots [see Additional file 2], which is very 
efficient, but the price of the five-way lens is high. There-
fore, we realized the effect of five-way lens based on sin-
gle-lens UAV flying through multiple routes and different 
lens tilt angles. When acquiring images every day, the 
UAV performs five flight tasks. The tilt angle of the lens 

was set to 90◦ in the first flight and 45◦ in the remaining 
four flight processes, as shown in Fig. 5a. When the lens 
tilt angle is 90◦ (Angle 1), the flight path was any of the 
routes in Fig.  5b. Tilt Angle 2 in Fig.  5a corresponds to 
airline (III) in Fig. 5b, tilt Angle 3 in Fig. 5a corresponds 
to airline (II) in Fig. 5b, tilt Angle 4 in Fig. 5a corresponds 
to airline (IV) in Fig.  5b, tilt Angle 5 in Fig.  5a corre-
sponds to airline (I) in Fig.  5b. After all missions were 
completed, approximately 950 RGB images with a spatial 
resolution of 0.29 cm were obtained.

Generation of point cloud, crop surface model 
and orthophoto mosaice
The point cloud of the experimental cotton field area 
was created using Agisoft Metashape (Agisoft LLC, 
St. Petersburg, Russia). The software aligns the over-
lapping images based on a feature point matching 
algorithm. The specific process of point cloud genera-
tion is shown in Fig. 6a. First, the acquired images are 
imported into Agisoft Metashape software for initial 
alignment to obtain a sparse point cloud. Then, the 
geographical coordinates of the ground control points 

Fig. 4 Field measurement results. a The actual measured height of the highest cotton in the sampling site. b LAI measurements on the third day 
after application
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were corrected, and the dense point cloud was recon-
structed. Finally, Orthomosaic and DSM were con-
structed based on dense point clouds. In the photos 
obtained each time, manual screening was conducted 
in advance to eliminate some photos that were blurred 
due to special circumstances. Blurred images make it 
more difficult to identify key points of matching across 
images. In the process of generating the model, the 
ground control point coordinate information in the 
software was used to conduct manual geotagging. By 
identifying 9 ground markers in the model, the coordi-
nates of ground control points were replaced with those 
measured by RTK equipment, and the position trans-
formation was applied to the whole point cloud to align 
photos and create sparse point clouds. Ground control 
points were used to optimize the location and direction 
data of the camera to obtain more accurate processing 
results of geographic coordinates [39]. The generated 
sparse point cloud contains areas that were not needed. 
To save computing resources and time, only the sparse 
point cloud within the research area was reserved for 
further research. Sparse point clouds after calibrated 
geographic coordinates were used as input to generate 
dense point clouds. Since the top of the cotton canopy 
was sharp and small after defoliation, according to the 
method used by Lu et  al. the recommended “mild” 

deep filtering was chosen to reconstruct small details 
to build dense point clouds [34]. Finally, based on the 
constructed dense point cloud, Orthomosaic and DSM 
of different dates were created using the default param-
eters in the software, as shown in Fig.  6b and Fig.  6d. 
Fig. 6c and e show the real growth of cotton at different 
times. It is obvious that there are fewer cotton leaves.

Point cloud processing
The obtained field point cloud can be regarded as a 3D 
point cloud map, which is defined as a point set S{WGS84}

1

where αi , βi and γi are latitude, longitude and eleva-
tion coordinates of the World Geodetic System 1984 
(WGS84), respectively. To facilitate the reading and cal-
culation of the spatial position of the point cloud, a local 
Cartesian coordinate system (L-C) is redefined here. The 
coordinate system of the 3D point cloud was expressed 
from the WGS84 reference system to the L-C reference 
system. The position of point m was first expressed as the 
Earth-centered Earth-fixed coordinate system (ECEF) by 
using the operator f(*) to obtain the point set S{ECEF}1  . The 
operator f(*) is represented as the calculation procedure 
to transform the WGS84 coordinate system to the L-C 
coordinate system [29].

(1)
S
{WGS84}
1 =

{

mi = [αi,βi, γi]
T ∈ Q3; i = 1, ..., card(S1)

}

(2)S
{ECEF}
1 =

{

mi = [xi, yi, zi]
T = f (m

{WGS84}
i ),∀m

{WGS84}
i ∈ S

{WGS84}
1

}

Fig. 5 The location of the photo taken by the UAV. a Five different acquisition image angles. b Flight path of the UAV to collect images
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Fig. 6 Agisoft Metashape processing workflow and exporting Orthomosaic and DSM. a Five processing steps in Agisoft Metashape. b, d 
Orthogonal mosaic with magnified views of local areas and DSM. c, e Actual cotton growth status on different dates
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Each point is then represented as an L-C reference 
system

where RL−C
ECEF is the rotation matrix from the ECEF refer-

ence system to the L-C reference system, and O{ECEF}
L−C  is 

the origin of the L-C reference system represented by the 
ECEF reference system. According to the WGS84 refer-
ence system, the location of origin O{ECEF}

L−C  was selected at 
the lowest point southwest of the test area, namely:

According to the definition, point O{ECEF}
L−C  belongs to the 

lower left boundary point of point set S{ECEF}1  . The rota-

tion matrix RL−C
ECEF is defined to obtain the x{L−C} and 

y{L−C} axes tangent to the latitude and longitude of the 
WGS84 reference system, respectively. Here, the x{L−C} 
axis is east, the y{L−C} axis is north, and the z{L−C} axis is 
opposite to the direction of the center of the Earth.

For the point cloud discussed in this paper, the origin 
of the local reference coordinate system was located at 
[37.947351231, 117.835755425, 4.1627]T , and the values 
of matrix RL−C

ECEF and array O
{ECEF}
L−C  are 

RL−C
ECEF =





−0.8843 − 0.4669 0

0.2871 − 0.5438 0.7886

−0.3682 − 0.6973 0.6149





and
O
{ECEF}
L−C = [2.3515,−4.4533,−3.9009]T · 106.

For ease of reading, when the superscript was not 
explicitly indicated below, the reference system con-
sidered is the L-C reference system by default, with 
S
{L−C}
1 = S1 . The point cloud was represented by the L-C 

reference system as

where xi , yi and zi are the spatial coordinates of each 
point in the point cloud graph.

It is a key problem to accurately extract plant height 
information from 3D point clouds and select points rep-
resenting the top of the cotton canopy and the height 
of these points relative to the soil surface. To obtain the 
height of the point cloud in the L-C reference system, a 
new point set S2 is established

(3)m
{L−C}
i = −RL−C

ECEFO
{ECEF}
L−C + RL−C

ECEFm
{ECEF}
i

(4)

O
{ECEF}
L−C = {[α0,β0, γ0],

α0 = min(

{

αi : [αi,βi, γi]
T ∈ S

{WGS84}
1

}

),

β0 = min(

{

αi : [αi,βi, γi]
T ∈ S

{WGS84}
1

}

),

γ0 = min(

{

αi : [αi,βi, γi]
T ∈ S

{WGS84}
1

}

)

}

(5)
S1 =

{

mi = [xi, yi, zi]
T ∈ Q3; i = 1, ..., card(S1)

}

where, given a point m ∈ S1 , h is its relative height to the 
local ground.

By selecting sampling points and measuring the height of 
cotton (h), the ground elevation at the given point pi can 
be obtained. In fact, even in the plain, there may be small 
slopes at different sampling sites. To minimize the error, the 
two adjacent sampling regions were regarded as two them-
selves, and the terrain between the two sampling regions 
was modeled by defining the points of the two subsets.

and

The lowest ground elevation between the two sampling 
regions was determined by evaluating the centroid 
between Mk and Nk , so the subset Sk representing the 
lowest ground elevation can be simulated by plane.

where xdj,ydj and zdj are the centroid coordinates of dj , 
and dj is the lowest subset of the centroid between Mk 
and Nk . The coefficients oj , pj and qj can be optimized by 
the following formula:

The relative height of point mi ⊂ Sk with respect to plane 
Sk is

Finally, the 3D point cloud can be expressed as

Calculation of cotton canopy height
The height of the cotton canopy refers to the vertical 
distance between the ground and the top of the cotton 
canopy, such as the highest leaf in the growing period 
or the top of the cotton during the opening period. 

(6)
S2 =

{

mi = [x, y, e]T ∈ Q3 : ∀m = [x, y, z]T

∈ S1, card(S2) = card(S1)
}

(7)Mk =

{

mi = [xi, yi, zi]
T ∈ S2

}

(8)Nk =

{

mi = [xi, yi, zi]
T ∈ S2

}

(9)
δj =

{

[x, y, z]T ∈ Q3 ∼ oδj (x − xdj )

+pδj (y− ydj )+ qδj (z − zdj ) = 0

}

(10)

min
oj ,pj ,qj∈Q

card(δj)
∑

i=1

(oj(xi − xdj )+ pj(yi − ydj )+ qj(zi − zdj ))
2

o2j + p2j + o2q

(11)
ei = zi + q−1

j (oj(xi − xdj )+ pj(yi − ydj ))− zdj , ∀mi ⊂ Sk

(12)
S3 =

{

n = [x, y, e]T ∈ Q3 : ∀m = [x, y, z]T ∈ Sk

}
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To estimate the plant height of crops by using aerial 
images taken by UAVs, the upper boundary of the crop 
canopy and ground altitude were usually obtained from 
the point cloud or DSM of the experimental area.

In this study, the UAV five-way aerial photography 
method was used to obtain a better image effect on 
the exterior of the cotton canopy, which then could 
construct a more accurate cotton canopy and obtain 
a more precise upper boundary of the canopy. The 
upper boundary was usually represented by a specific 
higher percentile in the DSM, such as the 95th or 99th 
percentile. However, due to the shielding between the 
cotton canopy in the field and the influence of weeds 
in the field, it is often difficult for UAV aerial photog-
raphy to capture the soil information on the ground of 
the research area. This also makes it difficult to directly 
extract the ground elevation information from the 
reconstructed point cloud or DSM.

Currently, there are two main methods to estimate crop 
plant height using UAV aerial images: the point cloud 
method [46] and the ground reference method [47]. The 
point cloud method ensures that the soil on the ground 
within or between experimental areas can be seen by 
UAVs. Referring to the ground method, a digital terrain 
model (DTM) is generated based on aerial images of bare 
land before planting crops.

In the cotton growth of intensive experimental areas, 
the ground was shielded by the canopy, and no DTM 
measurement was conducted in the early stage of the 
test, which cannot meet the requirements of the above 
two methods. In this study, linear interpolation is used to 
generate DTM.

The test area was divided into 32 5 × 5 m plots, and 4 
1 × 1 m sampling points were selected in each plot, as 
shown in Fig. 1 (c) and (d). According to the definition, 
cotton plant height (h) is the vertical distance between 
the upper boundary of the plant ( hu ) and ground eleva-
tion ( hg ), so we plotted an illustration figure, as shown 
in Fig. 7. In the process of manual measurement of cot-
ton plant height, the highest plant was selected from four 
sampling points for height measurement. The ground 
height of the sampling point is measured by RTK equip-
ment, the ground elevation of sampling point i was hgi , 
and the measured plant height was hci . The 99th percen-
tile of the DSM value was selected as the upper bound-
ary in this study [47]. The upper boundary of the sampled 
points is denoted P99i , and the upper boundary of the 
unsampled points is denoted P99f .

Since the test plot was located in a plain area, the land 
leveling operation was conducted before planting cotton, 
the terrain was flat without undulation, and the sampling 
points were evenly distributed in the test area, so the 
ground elevation ( hgc ) of the nonsampling area in the plot 

can be simplified by the average of the ground elevation 
of the four sampling points in the plot.

Therefore, the cotton plant height ( hf  ) of nonsampling 
points in the cell can be expressed as

The estimation accuracy of the cotton plant height solu-
tion method was evaluated by comparing the estimated 
value of cotton plant height obtained by the above 
method with the measured value. Mean absolute error 
(MAE), root mean square error (RMSE) and coefficient 
of determination ( R2 ) were used to evaluate the accuracy 
of plant height estimation.

where n is the total number of sampling points in the test 
field, hci and hei are the measured and estimated values of 
plant height at the ith sampling point, respectively, and h 
is the average value of the measured plant height at the 
sampling point.

Calculation of point cloud density
The evaluation of cotton LAI is related to the spatial dis-
tribution of cotton leaves in the horizontal and vertical 
directions. Cotton in the test area was sown by machine 
and managed with consistent water and fertilizer. The 
growth pattern of cotton was basically evenly distributed 
in the horizontal direction, while the vertical direction 
showed inconsistencies in plant height due to collapse 
and other reasons. In this study, the vertical spatial dis-
tribution of the cotton canopy was taken as an important 
parameter in evaluating LAI. A single value was used 
to represent the complex canopy density distribution 
of point cloud S3 . To accurately analyze the point cloud 
density, the change in point cloud density was analyzed 
by defining subset Ru,v of the point cloud within the range 
of x ∈ [xmin, xmax] , y ∈ [ymin, ymax] and e ∈ [emin, emax] in 
point cloud S3 . Subset Ru,v is in a rectangular body with 

(13)hgf =

∑4
i=1 P99i

4

(14)hf = P99f − hgf

(15)MAE =
1

n

n
∑

i=1

∣

∣hci − hei
∣

∣

(16)RMSE =

√

√

√

√

1

n

n
∑

i=1

(hci − hei)2

(17)R2 =

∑n
i=1(hei − h)2

∑n
i=1(hci − h)2
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equal length and width ( x = y = ǫ ). The point cloud in 
the yellow cube in Fig. 8 is an example of subset Ru,v.

By calculating the number of point clouds in subset Ru,v , 
all subsets Ru,v in point gathering S3 are described as a 
two-dimensional map

When the boundary lengths u and v of subset Ru,v are 
both 1, the two-dimensional map represents the density 
distribution of point (S3)i in point set S3 on the horizontal 
plane ( x − y plane), where u ∈ [1, 40], v ∈ [1, 20] and A3 
is a two-dimensional matrix.

In the calculation of point cloud density, ground point 
clouds in the cell need to be segmented according to the 
ground elevation solved above. After segmentation, only 
the point clouds above the ground were retained and used 
as the source data for solving the point cloud density. 
The two-dimensional matrix A3 was greatly influenced 

(18)Ru,v(ǫ) = {ni ∈ S3|(u− 1) · ǫ ≤ xi < u · ǫ, (v − 1) · ǫ ≤ ei − emin < v · ǫ}

(19)u ∈ U =

{

1, 2, ...,
xmax − xmin

ǫ

}

(20)v ∈ U =

{

1, 2, ...,
emax − emin

ǫ

}

(21)A3 =

{

au,v = card(Ru,v) · ǫ
−2, ∀u ∈ U , v ∈ V

}

by the distribution of the cotton canopy and the ǫ value. 
Since the distribution of the cotton canopy could not be 

changed, only the ǫ value was analyzed here. Theoreti-
cally, the smaller the ǫ value is, the more detailed the two-
dimensional matrix A3 can reflect the heterogeneity of 
the density distribution of the cotton canopy point cloud. 
However, when the value of ǫ is too small, the number of 
point clouds in subset Ru,v will be zero; that is, there are 
empty elements in matrix A3 , which will affect the effect 
of the density distribution map of the canopy point cloud. 
To better describe matrix A3 , gx,3(ǫ) is defined to repre-
sent the ratio of the number of elements greater than 0.2 
times the average density of the point cloud to the size of 
the total two-dimensional matrix:

where ρ is the average density of the point cloud.
In combination with the definition of LAI and the 

planting row width of cotton, ǫ = 1 was chosen here.

(22)
gx,3(ǫ) = [

(xmax−xmin)·ǫ
−1

∑

r=1

(emax−emin)·ǫ
−1

∑

r=1

f (au,v)]×

[(xmax − xmin) · (emax − emin) · ǫ
−2]−1

(23)f (au,v) =

{

0, au,v < 0.2ρ

1, au,v ≥ 0.2ρ

Fig. 7 Extracts plant height h by subtracting ground elevation hg from the upper boundary hu of DSM
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Construction of the LAI estimation model
There was a linear relationship between LAI and biophysi-
cal parameters of the crop. Corcoles et al. [48] showed that 
the linear model showed a correlation between LAI and 
canopy cover. The reliability of linear models in describing 
leaf area indices based on canopy height was demonstrated 
by Mathews et  al. [38] Multivariate linear models can be 
used to describe the relationship between the defined crop 
canopy and LAI [13]. In this study, a multivariate linear 
model was used to model the LAI as follows:

where G is the set of selected description subset gw,3 , tw 
is the coefficient of description subset gw,3 , j is the model 
intercept, and δ is the cotton row spacing.

(24)LAI =

(

∑

w∈G

tw · gw,3 + j

)

· δ−1
3

Results
Estimation of cotton canopy height at different times
Three days after spraying the Cotton Defoliant, the leaves 
grew thickly and began to fall off, as shown in Fig.  9a. 
Ten days after spraying the Cotton Defoliant, the leaves 
basically fell off, and the cotton bolls emerged, as shown 
in Fig. 9b. To evaluate the predictive ability of the plant 
height solution method in this study, the canopy height of 
cotton after 3 days of defoliant spraying (before leaf shed-
ding) and after 10 days of defoliant spraying (after leaf 
shedding) were estimated by using this method (shown in 
Eqs. (13) and (14)). Comparing the estimated height with 
the actual measured height (Fig. 10), the results show that 
the estimation effect of this method before blade shed-
ding was due to the effect after blade shedding. The R2 
values were 0.962 and 0.913, and the RMSEs were 0.018 
and 0.027, respectively.

Fig. 8 Different areas corresponding to different point cloud densities
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Canopy point cloud density distribution
The distribution of point cloud density represents the 
growth and distribution of the cotton canopy. A large 
point cloud density indicates that the cotton canopy is 
higher or denser, which is an important factor affecting 
LAI in the field. To obtain the point cloud distribution of 
the cotton canopy, first, a plot was randomly selected in 
the generated dense point cloud model (Fig.  11a, b). In 
this study, the ground elevation of the area was obtained 
based on the solution of Eq. (13). The point cloud was 
then segmented between the ground and cotton canopy 
in open source software (CloudCompare v.2.11.3, Cloud-
Compare) using the ground elevation as the reference. 
The segmented cotton canopy point cloud is shown in 
Fig. 11c. Finally, the density of the segmented cotton can-
opy point cloud was calculated in CloudCompare soft-
ware. The calculated point cloud density distribution is 
shown in Fig. 11d.

Construction of the LAI model
Field data were used to select the most reliable subset of 
crop descriptions by stepwise multilinear least squares 
optimization. A three-variable linear model for estimat-
ing the LAI was obtained by stepwise multilinear least 
squares optimization.

where dt is the maximum diameter of the cotton canopy 
in the estimated area.

The field LAI was estimated using Eq. (25) and com-
pared with the actual measurements, as shown in Fig. 12. 

(25)
LAI =(1.37618 · gx,3 + 0.66738 · dt

− 0.02035 · hei − 0.51087)/0.76

The accuracy of the estimated LAI before leaf shedding 
(Fig. 12a) was higher than that of the estimated LAI after 
leaf shedding (Fig. 12b).

Discussion
Accuracy difference of plant height estimation
RGB images can provide rich texture information, and 
RGB camera SfM technology can generate denser point 
cloud data, so it is suitable for producing DSMs of field 
crops [49]. Currently, height extraction from DSM pro-
duced by UAV aerial images is a widely used method for 
plant height estimation, but the accuracy still needs to be 
improved, especially when the ground elevation informa-
tion of the experimental area is not obtained in advance. 
In the actual agricultural production process, there is a 
practical situation in which the DTM of each operation 
plot is difficult to obtain accurately. Since a single DSM 
cannot obtain accurate plant height, this study used the 
measured plant height of sampling points combined with 
DSM to reverse solve the ground elevation.

Plant height can be estimated from UAV images cap-
turing the upper boundary of each plot (the 95th and/or 
99th percentile of the DSM) and the ground elevation of 
each plot [50]. In this study, there was a good correlation 
between the plant height estimated by the UAV and that 
measured manually, R2 >0.90. Che et  al. [51]. showed 
that both sky bottom photography and bevel photogra-
phy had good consistency in estimating the plant height 
and LAI of maize in the field. There was a great difference 
in plant height estimation between the two methods, but 
in LAI estimation, tilting photography was better than 
aerial photography. However, very little research has 
been done in agriculture. In this study, a photographic 

Fig. 9 a Cotton after 3 days of defoliant spraying. b Cotton after 10 days of defoliant spraying
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method of a simulated five-way lens was adopted, which 
is a combination of sky photography and bevel photogra-
phy. In the process of aerial photography, more abundant 
3D cotton canopy structure information was obtained, 
and the constructed point cloud was more coherent 
and dense, especially on the side of the cotton canopy 
and near the root of the cotton plant. This method can 
provide canopy profiles of leaves and stems while ensur-
ing accuracy in estimating plant height and LAI. The 
UAV image acquisition point cloud analysis method can 
effectively extract the phenotypic shape of cotton plants 
sprayed with defoliant from limited field observation 
data. However, at the same time, it needs special atten-
tion that the method of simulating a five-way lens needs 

more time and storage in data acquisition and more time 
to generate a dense point cloud.

The method of using the measured plant height of sam-
pling points and DSM to reverse solve the ground eleva-
tion showed excellent estimation ability in this study even 
without obtaining DTM. In terms of topography, the 
experimental area was located in a plain area, and land 
leveling work was conducted before planting cotton, 
which satisfies the requirements for solving the ground 
elevation in this study. Accurate ground elevation is a 
prerequisite for further accurate solutions of plant height.

In Fig.  10, it can seen that the estimated plant height 
is more accurate before the cotton leaves fall off. The 
growth state and physiological characteristics of cotton 
will also affect the estimation accuracy of plant height, 

Fig. 10 Scatter diagram of estimated plant height and actual measured plant height. a Estimation of plant height on October 1 (before leaf 
shedding). b Estimation of plant height on October 7 (after leaf shedding)

Fig. 11 Segmentation of ground and nonground points before calculating point cloud density. a Randomly selected plots in the test area. b 
Enlarged view of the selected plots for analysis. c Point cloud of the cotton canopy after removing the ground. d Distribution of cotton canopy 
point cloud density
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which can be summarized into three aspects. First, the 
flight altitude of the UAV was high, and the limited reso-
lution of the lens limits the height information contained 
in each pixel point. When the top leaves of cotton fall off, 
the accuracy of plant height estimation decreases because 
the branches are thin and the canopy structure becomes 
sparse. Second, making DSMs using images of mailbox 
pixels also results in partial loss of height information 
[52], which makes the estimated results smaller than the 
actual values. In addition, if the cotton plant is swayed by 
natural winds, details such as end twigs may not be well 
reconstructed, and it is not surprising that the fidelity of 
the point cloud is reduced [53]. However, for the estima-
tion of cotton plant height on flat plots, the method in 
this study was still applicable, and it is a good scheme for 
rapid monitoring of crop height in large fields.

Differences in LAI estimates
The vertical distribution of leaf area had high genetic 
variability and heritability, and there was no significant 
difference within the same generation [54]. Leaves tend 
to be located in the middle or lower part of the plant in 
the canopy. As height increases, the distribution of leaves 
becomes more equally and sparsely distributed. These 
changes are essentially continuous in the vertical direc-
tion [54]. The total number of point clouds obtained by 
the five-way photography method is large and several 
times higher compared to traditional single vertical angle 
photography. A large number of relatively complete point 
clouds provide a relatively accurate vertical distribution 
of leaf area and can clearly distinguish the plant out-
line, but the large number of point clouds tends to lead 

to computational inefficiencies. The researchers found a 
good correlation between estimated and measured LAI 
using the UAV-LIDAR 3D voxel approach [55]. By filter-
ing the appropriate voxel size to generate 3D voxels, the 
original shape of the point cloud can be guaranteed, the 
data can be compressed, and the efficiency of the algo-
rithm can be improved. In this study, LAI was extracted 
at the whole canopy level, and the voxel calculation was 
performed on the extracted cotton canopy point cloud, 
which greatly reduced the computation time.

The distribution of the projection density of the point 
cloud reflects the growth and distribution of the cotton 
canopy. LAI can be estimated from the point cloud struc-
ture and density of the plant canopy [13]. In this study, the 
LAI was solved considering the size of the cotton canopy 
(canopy projected area as a percentage of the total area in 
the solved plot), plant height and planting row spacing. 
There was good agreement between the calculated LAI 
and the measured LAI in the period after spraying the 
cotton defoliant. However, the estimated correlations of 
cotton plants decreased after leaf shedding compared to 
before leaf shedding. The main reason was that after the 
leaves fall off, most of the cotton plants are left with only 
branches and cotton lint, and a small number of plants 
have dried leaves hanging on them. The area reflected at 
this time was much smaller than before the leaves fall off, 
which may affect the performance of SfM. Grenzdörffer 
et al. [52] found that for the same crop, SfM performed 
better in dense smooth canopies than in sparse sharp 
canopies. Figure 12 also shows the same result. The cot-
ton canopy performs fully and smoothly before defolia-
tion and has a sufficient reflective area. After defoliation, 

Fig. 12 Scatter plots of estimated LAI and actual measured LAI. a LAI estimation on October 1 (before leaf shedding). b LAI estimation on October 
7 (after leaf shedding)
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the end branches are thin. The point cloud created by the 
SfM method missed the information of fine branches due 
to the camera resolution and flight altitude. After the leaf 
falls off, the top and lateral branches of the plant are thin 
and underrepresented in the construction of DSM, which 
can lead to errors in the estimation of plant height and 
cotton crown width. These errors will eventually accu-
mulate in the estimation of LAI, leading to the decline of 
R2.

Because of the use of cotton defoliants in this experi-
ment, cotton defoliants will speed up the shedding of leaves 
and promote the boll opening of cotton bolls. At the later 
stage of the experiment, the LAI of the same measuring 
point changed dynamically with the shedding of cotton 
leaves and boll opening of cotton bolls. Figure  13 shows 
that during the sampling period, the LAI of cotton showed 
two peaks and then gradually leveled off. The main rea-
son is that it takes some time for cotton plants to absorb 
cotton defoliant, and there will be an obvious defoliation 
effect after 2 days in general. At this time, cotton is in the 
early stage of flocculation, cotton plants absorb the effec-
tive ingredients of defoliant, the leaves gradually fall off the 
branches, and cotton bolls gradually mature flocculation. 
Three days after application, the volume of cotton bolls 

expanded rapidly after bolting, while the cotton leaves had 
not reached the peak of shedding; that is, the bolting speed 
of cotton bolls was greater than that of cotton leaves. At this 
time, the LAI showed the first peak, after which the leaves 
fell off rapidly; approximately five days after the application, 
most of them fell off, and the LAI was gradually reduced by 
the influence of cotton leaves. The cotton boll continued to 
produce bolls until the second peak value appeared. After 
reaching the peak value, seven days after treatment, cotton 
leaves basically fell off, and cotton bolls gradually reached 
the late stage of boll production. At the later stage of the 
experiment, LAI changed little and tended to be flat.

After cotton leaves fall off, if there is no strong wind 
influence, the leaves may continue to hang on the 
branches, which will have a certain influence on the meas-
urement of LAI and make the measurement result slightly 
larger than the actual result. This study ignored the slight 
difference. Importantly, the constructed multitemporal 
point cloud can capture the trends of plant physiological 
parameters. Cotton bolls are not leaves, but in this study, 
when measuring LAI, the projected area of cotton bolls 
was equivalent to the spread area of leaves to verify the 
feasibility and accuracy of point cloud prediction of LAI.

Fig. 13 a LAI changes over time. b Sampling points for LAI measurement
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Conclusions
Currently, a combination of UAV aerial imagery, 
advanced image processing and analytical applications 
allows direct assessment of the phenotypic shape of 
cotton in the field, such as estimating the height of the 
cotton canopy and LAI. This technique can be a suit-
able method for cotton canopy height and LAI esti-
mation, providing new opportunities to monitor the 
physiological traits and physical parameters of cotton 
in large-scale fields. As an objective, efficient, and accu-
rate method, it can be used to replace time-consuming 
and laborious manual measurement. The observed data 
indicated that the structural changes in the cotton can-
opy would affect the accuracy of UAV point cloud esti-
mation. Further studies are needed to explore this effect 
and the impact of agricultural environmental stroke on 
UAV point cloud estimation performance.

Overall, this study shows a rapid method for obtain-
ing the plant height and LAI of cotton in the field. A 
small single-lens UAV was used to simulate the five-
way lens for aerial photography and to generate point 
clouds and construct a DSM based on RGB images 
acquired from aerial photography in the field environ-
ment. The performance of the proposed method for 
estimating plant height and LAI was evaluated, and the 
results were satisfactory. For estimating plant height, R2 
and RMSE were 0.962 and 0.913 and 0.018 and 0.027, 
respectively. for estimating LAI, R2 and RMSE were 
0.872, 0.814 and 0.132, 0.173, respectively. The results 
demonstrated the potential of fusing manually meas-
ured plant height data and UAV aerial image data for 
estimating ground elevation and the potential of point 
clouds constructed from UAV images for estimating 
the LAI of cotton in the field. In future research, low-
cost UAV systems can continue to be used effectively to 
monitor other crop growth parameters, such as above-
ground biomass.
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Additional file 1. Spraying cotton defoliants by agricultural UAVs has 
become the main operation mode of mechanical cotton picking in China. 
(a) Indentation and cotton boll shedding formed by tractor sprayed defoli-
ant. (b) UAV spraying defoliant does not harm crops. (c) High concentra-
tions of Cotton Defoliant were sprayed by UAV and caused by hanging 
branches of coke leaves.

Additional file 2. A real picture of a five-way lens. There are 5 lenses in 
different directions mounted on one camera, which greatly improves the 
number and efficiency of image acquisition.
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