12 research outputs found
Astroglial-Kir4.1 in Lateral Habenula Drives Neuronal Bursts to Mediate Depression
International audienceEnhanced bursting activity of neurons in the lateral habenula (LHb) is essential in driving depression-like behaviours, but the cause of this increase has been unknown. Here, using a high-throughput quantitative proteomic screen, we show that an astroglial potassium channel (Kir4.1) is upregulated in the LHb in rat models of depression. Kir4.1 in the LHb shows a distinct pattern of expression on astrocytic membrane processes that wrap tightly around the neuronal soma. Electrophysiology and modelling data show that the level of Kir4.1 on astrocytes tightly regulates the degree of membrane hyperpolarization and the amount of bursting activity of LHb neurons. Astrocyte-specific gain and loss of Kir4.1 in the LHb bidirectionally regulates neuronal bursting and depression-like symptoms. Together, these results show that a glia–neuron interaction at the perisomatic space of LHb is involved in setting the neuronal firing mode in models of a major psychiatric disease. Kir4.1 in the LHb might have potential as a target for treating clinical depression
The Ninth Visual Object Tracking VOT2021 Challenge Results
acceptedVersionPeer reviewe
Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water
Utilising waste amine-oxime (WAO) resin through microwave semi-carbonization, a carbon adsorbent (CA) was obtained to remove Pb(II). After microwave treatment, the pore size of the skeleton structure, three-dimensional porous network, and lamellar pore structure of WAO was improved. The distribution coefficient (Kd) of Pb(II) onto CA is 620 mL/g, and the maximum adsorption capacity of Pb(II) is 82.67 mg/g after 20 min of WAO microwave treatment. The adsorption kinetics and adsorption isotherms conform to the quasi-second-order kinetic equation and Langmuir adsorption isotherm model, respectively. The surface of MT-WAO is negatively charged and the adsorption mechanism is mainly electrostatic interaction. Pb(II) elution in hydrochloric acid solution is more than 98%, and its recovery is high at 318 K and for 1 h
Purification and Phase Evolution Mechanism of Titanium Oxycarbide (TiCxOy) Produced by the Thermal Reduction of Ilmenite
The phase evolution mechanism and purification of titanium oxycarbide (TiCxOy) synthesized via the carbothermal reduction of ilmenite are investigated. The reaction process and products of the performed carbothermal reduction are analyzed by means of X-ray diffraction (XRD), scanning electron microscopy-energy disperse spectroscopy (SEM-EDS), X-ray photoelectric spectroscopy (XPS) and enthalpy, entropy and heat capacity (HSC) thermodynamic software. According to the shapes of Ti 2p3/2 and Ti 2p1/2 peaks in XPS spectra, together with the XRD analyses, the reduction products of TiO, TiCxOy or TiC can be judged. The phase evolution mechanism involves FeTi2O5, Ti2O3, Fe, TiO, TiCxOy and TiC under enhancing the content of carbon. The phase evolution law can be written as FeTiO3 → FeTi2O5 → Ti2O3 + Fe → TiO + Fe → TiCxOy + Fe. Due to the incomplete reduction state of TiCxOy, the ΔGθ of TiCxOy is detected between TiC and TiO. TiCxOy could be attained under reduction conditions of Ti:C, 1:3–1:4 in argon atmosphere at 1550 °C after 2 h. Grinding, flotation and magnetic separation processes displayed that C, TiCxOy and Fe are not dissociated until the particle size of −38 μm. TiCxOy and Fe can be separated by an iron-bath in a high temperature. 95.56% TiCxOy can be obtained, and resistance of TiCxOy is less than 0.05 Ω
Purification and Phase Evolution Mechanism of Titanium Oxycarbide (TiC<sub>x</sub>O<sub>y</sub>) Produced by the Thermal Reduction of Ilmenite
The phase evolution mechanism and purification of titanium oxycarbide (TiCxOy) synthesized via the carbothermal reduction of ilmenite are investigated. The reaction process and products of the performed carbothermal reduction are analyzed by means of X-ray diffraction (XRD), scanning electron microscopy-energy disperse spectroscopy (SEM-EDS), X-ray photoelectric spectroscopy (XPS) and enthalpy, entropy and heat capacity (HSC) thermodynamic software. According to the shapes of Ti 2p3/2 and Ti 2p1/2 peaks in XPS spectra, together with the XRD analyses, the reduction products of TiO, TiCxOy or TiC can be judged. The phase evolution mechanism involves FeTi2O5, Ti2O3, Fe, TiO, TiCxOy and TiC under enhancing the content of carbon. The phase evolution law can be written as FeTiO3 → FeTi2O5 → Ti2O3 + Fe → TiO + Fe → TiCxOy + Fe. Due to the incomplete reduction state of TiCxOy, the ΔGθ of TiCxOy is detected between TiC and TiO. TiCxOy could be attained under reduction conditions of Ti:C, 1:3–1:4 in argon atmosphere at 1550 °C after 2 h. Grinding, flotation and magnetic separation processes displayed that C, TiCxOy and Fe are not dissociated until the particle size of −38 μm. TiCxOy and Fe can be separated by an iron-bath in a high temperature. 95.56% TiCxOy can be obtained, and resistance of TiCxOy is less than 0.05 Ω