256 research outputs found

    Hyperin up-regulates miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells

    Get PDF
    Objective. To investigate the effects of Hyperin (Hyp) on osteogenic differentiation of MC3T3E1 cells. Methods. Differentially expressed miRNA was screened by miRNA Microarray. miR-7031-5P overexpression and knockdown MC3T3-E1 cell models were constructed by transfecting miR-7031-5P mimics and inhibitor. Alizarin red staining (ARS) assay was used to observe the formation of mineralized nodules in MC3T3-E1 cells. ALP activity was detected by using ALP detection kit. Western blot assay was used to examine the changes in osteogenic differentiation-related proteins. The relationship between miR-7031-5P and Wnt7a was revealed by dual luciferase report experiments. Results. We found that miR-7031-5P was upregulated in MC3T3-E1 cells after Hyp treatment. The results indicated that compared with the untreated group, Hyp promoted the formation of mineralized nodules and the alkaline phosphatase (ALP) activity of MC3T3-E1 cells via overexpressing miR-7031-5P. Besides, elevated miR-7031-5P increased OPN, COL1A1, and Runx2 mRNA expression. More importantly, Wnt7a was identified as the downstream target gene of miR-70315P promoting osteogenic differentiation of MC3T3-E1 cells. Conclusions. Hyp up-regulated miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells by targeting Wnt7

    SAILER: Structure-aware Pre-trained Language Model for Legal Case Retrieval

    Full text link
    Legal case retrieval, which aims to find relevant cases for a query case, plays a core role in the intelligent legal system. Despite the success that pre-training has achieved in ad-hoc retrieval tasks, effective pre-training strategies for legal case retrieval remain to be explored. Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. However, most existing language models have difficulty understanding the long-distance dependencies between different structures. Moreover, in contrast to the general retrieval, the relevance in the legal domain is sensitive to key legal elements. Even subtle differences in key legal elements can significantly affect the judgement of relevance. However, existing pre-trained language models designed for general purposes have not been equipped to handle legal elements. To address these issues, in this paper, we propose SAILER, a new Structure-Aware pre-traIned language model for LEgal case Retrieval. It is highlighted in the following three aspects: (1) SAILER fully utilizes the structural information contained in legal case documents and pays more attention to key legal elements, similar to how legal experts browse legal case documents. (2) SAILER employs an asymmetric encoder-decoder architecture to integrate several different pre-training objectives. In this way, rich semantic information across tasks is encoded into dense vectors. (3) SAILER has powerful discriminative ability, even without any legal annotation data. It can distinguish legal cases with different charges accurately. Extensive experiments over publicly available legal benchmarks demonstrate that our approach can significantly outperform previous state-of-the-art methods in legal case retrieval.Comment: 10 pages, accepted by SIGIR 202

    CG-fusion CAM: Online segmentation of laser-induced damage on large-aperture optics

    Full text link
    Online segmentation of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully supervised semantic segmentation algorithms have achieved state-of-the-art performance, but rely on plenty of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially under-activated class activation regions degrade segmentation performance. In this paper, we propose a weakly supervised semantic segmentation method with Continuous Gradient CAM and its nonlinear multi-scale fusion (CG-fusion CAM). The method redesigns the way of back-propagating gradients and non-linearly activates the multi-scale fused heatmaps to generate more fine-grained class activation maps with appropriate activation degree for different sizes of damage sites. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully supervised algorithms

    Association between apathy in patients with maintenance dialysis and hospitalization or mortality: a prospective cohort study

    Get PDF
    BackgroundPatients receiving maintenance dialysis experience increased rates of hospitalization and mortality. Apathy is associated with reduced quality of life and increased hospitalization, institutionalization, and death. Whether apathy contributes to poor outcomes in population undergoing maintenance dialysis remain unknown.MethodsWe conducted a prospective cohort study of maintenance dialysis population who were consecutively recruited at the Dialysis Center of Shanghai General Hospital between July 2017 and August 2018 and were followed up for 3 year. Apathy status was measured by the Apathy Evaluation Scale. The study outcomes were the occurrence of death and first hospitalization.ResultsA total of 647 participants included in this study, 274 (42.3%) had a current apathy and 373 (57.7%) were not. During the follow-up period, 394 (60.9%) were hospitalized, and 169 (26.1%) died. Kaplan–Meier analysis showed that the risks of hospitalization and mortality were significantly higher in individuals with apathy than in those without apathy (both p < 0.001). Apathy at baseline was associated with hospitalization and death both in univariate analysis and in all multivariable models (all p < 0.001).ConclusionApathy was highly prevalent and independently correlated with an increased risk of poor outcomes in patients with maintenance dialysis

    Observation study of using a small dose of rituximab treatment for thyroid-associated ophthalmopathy in seven Chinese patients: One pilot study

    Get PDF
    ObjectiveTo report the efficacy, long-term safety, and tolerability of using a small dose (125 mg/m2 weekly for 4 weeks) of rituximab to treat Chinese patients with thyroid-associated ophthalmopathy (TAO).MethodsSeven patients with active moderate-to-severe TAO were prospectively recruited in this study. A small dose of rituximab (125mg/m2 body surface area) was given weekly with a duration of four weeks. Thyroid function, thyrotropin receptor antibody (TRAb), B cell and T cell subsets, ophthalmological examination, magnetic resonance imaging derived parameters, and adverse reactions were recorded at each visit.ResultsSeven patients were followed for an average of 224 weeks. B-cell depletion was observed in all patients following rituximab infusion. The clinical activity score (CAS) decreased from 4.86 ± 0.69 to 3.00 ± 0.82 at 5 weeks after treatment (P = 0.033) and remained significantly lower than baseline values at the end of follow-up (P = 0.001). Compared to baseline values, significant decreases in exophthalmos of the right eye, the thickness of extraocular muscles with maximum signal intensity, and the highest signal intensity ratio (SIR) of extraocular muscle to ipsilateral temporal muscle values were observed at the last follow-up (all P < 0.05). Disease progressions or recurrences were not observed during follow-up. Only mild fatigue was observed after the first infusion as a side effect (n = 1).ConclusionSmall dose of rituximab may be a promising option with adequate safety, tolerability, and long-term efficacy for patients with active moderate-to-severe TAO

    Efficient solar-driven CO2-to-fuel conversion via Ni/MgAlO<sub>x </sub>@SiO<sub>2</sub> nanocomposites at low temperature

    Get PDF
    Solar-driven CO2-to-fuel conversion assisted by another major greenhouse gas CH4 is promising to concurrently tackle energy shortage and global warming problems. However, current techniques still suffer from drawbacks of low efficiency, poor stability, and low selectivity. Here, a novel nanocomposite composed of interconnected Ni/MgAlOx nanoflakes grown on SiO2 particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO2-to-fuel conversion. An ultrahigh light-to-fuel efficiency up to 35.7%, high production rates of H2 (136.6 mmol min−1g− 1) and CO (148.2 mmol min−1g−1), excellent selectivity (H2/CO ratio of 0.92), and good stability are reported simultaneously. These outstanding performances are attributed to strong metal-support interactions, improved CO2 absorption and activation, and decreased apparent activation energy under direct light illumination. MgAlOx @SiO2 support helps to lower the activation energy of CH* oxidation to CHO* and improve the dissociation of CH4 to CH3* as confirmed by DFT calculations. Moreover, the lattice oxygen of MgAlO x participates in the reaction and contributes to the removal of carbon deposition. This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency, high selectivity, and benign sustainability
    • …
    corecore