17 research outputs found

    Tulp1 deficiency causes early-onset retinal degeneration through affecting ciliogenesis and activating ferroptosis in zebrafish

    Get PDF
    Mutations in TUB-like protein 1 (TULP1) are associated with severe early-onset retinal degeneration in humans. However, the pathogenesis remains largely unknown. There are two homologous genes of TULP1 in zebrafish, namely tulp1a and tulp1b. Here, we generated the single knockout (tulp1a(−/−) and tulp1b(−/−)) and double knockout (tulp1-dKO) models in zebrafish. Knockout of tulp1a resulted in the mislocalization of UV cone opsins and the degeneration of UV cones specifically, while knockout of tulp1b resulted in mislocalization of rod opsins and rod-cone degeneration. In the tulp1-dKO zebrafish, mislocalization of opsins was present in all types of photoreceptors, and severe degeneration was observed at a very early age, mimicking the clinical manifestations of TULP1 patients. Photoreceptor cilium length was significantly reduced in the tulp1-dKO retinas. RNA-seq analysis showed that the expression of tektin2 (tekt2), a ciliary and flagellar microtubule structural component, was downregulated in the tulp1-dKO zebrafish. Dual-luciferase reporter assay suggested that Tulp1a and Tulp1b transcriptionally activate the promoter of tekt2. In addition, ferroptosis might be activated in the tulp1-dKO zebrafish, as suggested by the up-regulation of genes related to the ferroptosis pathway, the shrinkage of mitochondria, reduction or disappearance of mitochondria cristae, and the iron and lipid droplet deposition in the retina of tulp1-dKO zebrafish. In conclusion, our study establishes an appropriate zebrafish model for TULP1-associated retinal degeneration and proposes that loss of TULP1 causes defects in cilia structure and opsin trafficking through the downregulation of tekt2, which further increases the death of photoreceptors via ferroptosis. These findings offer insight into the pathogenesis and clinical treatment of early-onset retinal degeneration

    Clinical study on effect of wrist-ankle acupuncture on incidence of hypertension after intubation during induction of general anesthesia

    No full text
    Objective To observe the effect of wrist-ankle acupuncture on the incidence of hypertension after tracheal intubation during induction of general anesthesia. Methods 200 patients receiving selective surgery under tracheal intubation and general anesthesia in our Hospital were selected and divided into control group and wrist-ankle acupuncture group using the random number table method, with 100 patients in each group. Sufentanil, cisatracurium besilate, remifentanil, etomidate and lidocaine hydrochloride were used for anesthesia induction, and intravenously injected according to the onset time of drugs, successively. The wrist-ankle acupuncture group was needled in bilateral upper 1, 2 and 3 areas, while the control group was treated with false acupuncture.Blood pressure and related blood biochemical indexes were measured and observed at different stages in each group. Result The incidence of blood pressure exceeding 20% and 30% of basal blood pressure within 5 minutes after intubation was as follows:wrist-ankle acupuncture group 11.83% and 6.45%; control group 29.79% and 22.34%, The incidence in the study group was lower than that in the control group. Norepinephrine concentration in the wrist-ankle acupuncture group was significantly lower than that before induction (P < .05), and plasma Norepinephrine concentration in the wrist-ankle acupuncture group was significantly lower than that in the control group after intubation (P < .05). The plasma Norepinephrine concentration in the wrist-ankle acupuncture group was significantly lower than that in the control group after intubation (P < .05) Conclusion wrist-ankle acupuncture can prevent hypertension after intubation during anesthesia induction. Moreover, it is safe, effective, minimally invasive. Therefore, it is easy to be popularized in clinical practice

    Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin: A case of the Caofeidian geothermal heating project in Tangshan, China

    No full text
    Taking the Gaoshangpu-Liuzan geothermal field in the Nanpu sag of the Bohai Bay Basin as the research object, this paper discusses the geological conditions and potential of the geothermal resources of the Guantao Formation in the study area, and introduces the development practice of geothermal energy heating in Caofeidian. The average buried depth of the Guantao Formation is 1500–2500 m, the lithology is dominated by sandy conglomerate, and the average thickness of thermal reservoir is 120–300 m. The average porosity of thermal reservoir is 28%–35%, the permeability is (600–2000)×10−3 μm2, and the temperature of thermal reservoir is 70–110 °C. The formation has total geothermal resources of 13.79×1018 J, equivalent to 4.70×108 t of standard coal. Based on a large amount of seismic and drilling data from oil and gas exploration, this study carried out high quality target area selection, simulation of sandstone thermal reservoir, and production and injection in the same layer. The geothermal heating project with distributed production and injection well pattern covering an area of 230×104 m2 was completed in the new district of Caofeidian in 2018. The project has been running steadily for two heating seasons, with an average annual saving of 6.06×104 t of standard coal and a reduction of 15.87×104 t of carbon dioxide, achieving good economic and social benefits. This project has proved that the Neogene sandstone geothermal reservoir in eastern China can achieve sustainable large-scale development by using the technology of “balanced production and injection in the same layer”. It provides effective reference for the exploration and development of geothermal resource in oil and gas-bearing basins in eastern China

    Knockout of mafba Causes Inner-Ear Developmental Defects in Zebrafish via the Impairment of Proliferation and Differentiation of Ionocyte Progenitor Cells

    No full text
    Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba−/−) zebrafish model using CRISPR/Cas9 technology. The mafba−/− mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba−/− mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles

    The splicing factor Prpf31 is required for hematopoietic stem and progenitor cell expansion during zebrafish embryogenesis

    No full text
    Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.</p
    corecore