12 research outputs found

    Longitudinal interference analysis of shale gas multi-stage fracturing horizontal wells upon high-precision pressure test

    No full text
    Shale gas plays a crucial role in the national energy supply. However, fast pressure drop, production decline, and water resources pollution caused by well interference and fracture hits become more severe in multi-layer mining shale gas fields. Such as, it is urgent to evaluate the interference of multi-stage fracturing horizontal wells (MFHWs) between the upper and lower gas layers in Chinese Jiaoshiba shale gas field. Therefore, we put forward a comprehensive method to analyze the MFHW interference in this paper. The method contains bottom-hole pressure response analysis (BHPRA) during neighboring well fracturing, BHPRA of well interference test, and production dynamic analysis. Our study indicates that longitudinal pressure interference exists between the Jiaoshiba upper and lower gas layers upon the apparent interference pressure response in a multi-well test. However, MFHW interferences occur in the corresponding fracturing stages with shorter distance, and the interference strength is related to both well distance and fracturing scales. The Jiaoshiba upper gas layers can be developed to increase the gas production performance, but it is necessary to maintain a reasonable well spacing to avoid severe interference during the development

    A Study of a Composite Biofilm Reactor for the Treatment of Mariculture Wastewater: Performance and Microbial Communities

    No full text
    Mariculture wastewater is one of the main sources of saline wastewater. This study used a waterfall aeration biofilm reactor combined with a sequencing batch reactor (WABR-SBR) to treat simulated mariculture sewage. Despite the high inhibition by salinity, the reactor maintained a high removal efficiency for organic matter and ammonium nitrogen. The ammonia nitrogen removal rate was greater than 99%, while that for nitrite, which is extremely toxic to farmed animals, was greater than 80%. Fourier transform infrared spectroscopy and scanning electron microscopy showed that salinity affected the surface structure and composition of biofilms, which became compact and secreted more solute to resist the impact of salinity. High throughput 16S rRNA sequencing revealed that the main phyla in the biofilms were Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. Metagenomic annotation of genes further indicated nitrogen metabolism pathways under high salinity. The conclusions of this study can provide a theoretical foundation for the biological treatment of high-salt wastewater and provide a technical reference for further application of the WABR-SBR composite system

    Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments

    Get PDF
    The thermal protection performance of superalloy honeycomb structure in high-temperature environments are important for thermal protection design of high-speed aircrafts. By using a self-developed transient aerodynamic thermal simulation system, the thermal protection performance of superalloy honeycomb panel was tested in this paper at different transient heating rates ranging from 5°C/s to 30°C/s, with the maximum instantaneous temperature reaching 950°C. Furthermore, the thermal protection performance of superalloy honeycomb structure under simulated thermal environments was computed for different high heating rates by using 3D finite element method, and a comparison between calculational and experimental results was carried out. The results of this research provide an important reference for the design of thermal protection systems comprising superalloy honeycomb panel

    COUPLED NUMERICAL SIMULATION OF FRACTURING MULTILAYER RESERVOIR FLOW WITH LEAN-STRATIFIED WATER INJECTION

    No full text
    Many multilayer sandstone reservoirs have reached extreme high water content and high recovery stage after long time waterflooding. These inner LPTOLs have been the main potential reserves. Lean-stratified water injection is one of the most important technologies to increase production and develop potential for multilayer oilfields with extreme high water content. However, traditional models cannot entirely solve the inner boundary conditions of lean-stratified water injection. Therefore, we established the injection wellbore constraint equations, which were coupled with the oil/water two-phase numerical reservoir models. Upon an embedded fracture model for simulating hydraulic fractures, a method to simulate the reservoir with horizontal fractures is shown. The influences of reservoir and fluid, horizontal fractures, and injection-production characteristics are analyzed for oil production and water-content dynamic. Considering the specific situation of lean-stratified water injection wells, the influences of different segments numbers, modes of combination in segment layers, and rhythm characteristics of remaining oil reserves and distribution are evaluated

    Tunable Plasmonic Band-Pass Filter with Dual Side-Coupled Circular Ring Resonators

    No full text
    A wavelength band-pass filter with asymmetric dual circular ring resonators in a metal-insulator-metal (MIM) structure is proposed and numerically simulated. For the interaction of the local discrete state and the continuous spectrum caused by the side-coupled resonators and the baffle, respectively, the transmission spectrum exhibits a sharp and asymmetric profile. By adjusting the radius and material imbedded in one ring cavity, the off-to-on plasmon-induced absorption (PIA) optical response can be tunable achieved. In addition, the structure can be easily extended to other similar compact structures to realize the filtering task. Our structures have important potential applications for filters and sensors at visible and near-infrared regions

    Visualizing the effect of phenyl group on the intra-or intermolecular vibrational dynamics of nitromethane, nitrobenzene and their mixtures by coherent anti-Stokes Raman scattering

    No full text
    We experimentally investigate the vibrational dynamics of nitromethane (NM), nitrobenzene (NB) and their mixtures using femtosecond time-resolved coherence anti-Stokes Raman scattering (CARS) spectroscopy. At first, we coherently excite Raman active modes of NM, NB and the beats arising from vibrational coupling can be clearly identified in CARS spectra. Results indicate that pairs of vibrational modes involved in the coupling correspond to different groups in one molecule. In a second stage, CARS spectroscopy is performed when vibrational modes of mixtures are collectively excited. NM/acetone and NM/methanol mixtures beats are not observed because the hydrogen bonds lead to a faster decoherence. On the other hand, evidences of beats and vibrational dephasing are found in NB/acetone and NB/methanol mixtures despite the fact that interactions in the mixture involve strong hydrogen bonds. The main reason behind this behavior is that phenyl group has a crucial influence on vibrational dynamics in mixtures. In particular, our results confirm that phenyl group bending mode at 425 cm−1 of NB is coupled with the other modes, and suggest may be instrumental in the energy transfer among molecules

    Combining a novel biofilm reactor with a constructed wetland for rural, decentralized wastewater treatment

    No full text
    A novel waterfall aeration biofilm reactor integrated with a constructed wetland (WABR-CW) system was developed to meet the challenge of decentralized wastewater treatment with a focus on nutrient removal. In a lab-scale experiment of 70 days, the WABR-CW showed a high removal efficiency for COD (85-98 %), NH4+-N (100 %), TN (60-90 %) and TP (85 %-95 %), even when different organic loading rates (OLR) were used. The CW was responsible for improving the overall performance in view of an increased nutrient removal. The CW offers denitrification capacity when the OLR is not optimal for the WABR. Based on the lab-scale experiment, a pilotscale WABR-CW was built and tested for aquaculture wastewater treatment and reuse. A total of 63 m3 wastewater was treated of which 56.7 m3 was reused. Furthermore, the microbial structure of the WABR-CW system was investigated. A metabolic analysis highlighted the N and C metabolic pathways and functional genes distribution in the WABR-CW system. Next generation sequencing not only linked the pollutants removal performance and microbial encoding genes but also disclosed the potential ability of WABR-CW to treat more polluted and more complex wastewater. The outcomes of this study provide scale-up results and a better understanding of the functioning of the WABR-CW.A novel waterfall aeration biofilm reactor integrated with a constructed wetland (WABR-CW) system was developed to meet the challenge of decentralized wastewater treatment with a focus on nutrient removal. In a lab-scale experiment of 70 days, the WABR-CW showed a high removal efficiency for COD (85-98 %), NH4+-N (100 %), TN (60-90 %) and TP (85 %-95 %), even when different organic loading rates (OLR) were used. The CW was responsible for improving the overall performance in view of an increased nutrient removal. The CW offers denitrification capacity when the OLR is not optimal for the WABR. Based on the lab-scale experiment, a pilotscale WABR-CW was built and tested for aquaculture wastewater treatment and reuse. A total of 63 m3 wastewater was treated of which 56.7 m3 was reused. Furthermore, the microbial structure of the WABR-CW system was investigated. A metabolic analysis highlighted the N and C metabolic pathways and functional genes distribution in the WABR-CW system. Next generation sequencing not only linked the pollutants removal performance and microbial encoding genes but also disclosed the potential ability of WABR-CW to treat more polluted and more complex wastewater. The outcomes of this study provide scale-up results and a better understanding of the functioning of the WABR-CW.A
    corecore