43 research outputs found

    Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation

    Get PDF
    Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which were dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, L-glutamine and D-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms

    Response of soil bacterial community composition and its associated geochemical parameters to rapid short-term cyclic groundwater-level oscillations: soil column experiments

    Get PDF
    Groundwater-level oscillations change geochemical conditions, carbon cycling processes and bacterial community composition, and these changes may vary vertically with depth in a soil. In this study, soil column experiments were conducted to explore variations in soil bacterial community composition and its associated geochemical parameters to rapid short-term cyclic groundwater-level oscillations driven by natural fluctuations (NF) and rainfall infiltration (RI) and the results are compared with quasi static (QS) column. Water saturation patterns in vadose and oscillated zones, and oxygen level patterns, soil total organic carbon (TOC) removal rates and soil bacterial community composition in vadose, oscillated and saturated zones were evaluated. Results showed that water saturation and oxygen level oscillated with groundwater level in NF and RI columns. TOC removal rates in RI column were the highest across vadose (~38.4%), oscillated (~35.8%) and saturated (~35.2%) zones. Deltaproteobacteria, which was significantly correlated with TOC removal (p < 0.05), exhibited relatively higher abundances in the vadose and oscillated zones of RI column than those of QS and NF columns. Soil bacterial community structure was dynamic at the class level due to water saturation, oxygen level and TOC removal. TOC removal was the driver to separate distribution of bacterial community structure in the vadose and oscillated zones of RI column from those of QS and NF columns. This study suggests that RI induced rapid short-term cyclic groundwater-level oscillations could significantly influence both soil carbon cycle and bacterial community structure in vadose and oscillated zones

    pH-Dependent Adsorption of Peptides on Montmorillonite for Resisting UV Irradiation

    No full text
    Ultraviolet (UV) irradiation is considered an energy source for the prebiotic chemical synthesis of life’s building blocks. However, it also results in photodegradation of biology-related organic compounds on early Earth. Thus, it is important to find a process to protect these compounds from decomposition by UV irradiation. Herein, pH effects on both the adsorption of peptides on montmorillonite (MMT) and the abilities of peptides to resist UV irradiation due to this adsorption were systematically studied. We found that montmorillonite (MMT) can adsorb peptides effectively under acidic conditions, while MMT-adsorbed peptides can be released under basic conditions. Peptide adsorption is positively correlated with the length of the peptide chains. MMT’s adsorption of peptides and MMT-adsorbed peptide desorption are both rapid-equilibrium, and it takes less than 30 min to reach the equilibrium in both cases. Furthermore, compared to free peptides, MMT-adsorbed peptides under acidic conditions are well protected from UV degradation even after prolonged irradiation. These results indicate amino acid/peptides are able to concentrate from aqueous solution by MMT adsorption under low-pH conditions (concentration step). The MMT-adsorbed peptides survive under UV irradiation among other unprotected species (storage step). Then, the MMT-adsorbed peptides can be released to the aqueous solution if the environment becomes more basic (releasing step), and these free peptides are ready for polymerization to polypeptides. Hence, a plausible prebiotic concentration–storage–release cycle of amino acids/peptides for further polypeptide synthesis is established

    Reliability Assessment of Power Systems with Photovoltaic Power Stations Based on Intelligent State Space Reduction and Pseudo-Sequential Monte Carlo Simulation

    No full text
    As the number and capacity of photovoltaic (PV) power stations increase, it is of great significance to evaluate the PV-connected power systems in an effective, reasonable, and quick way. In order to overcome the challenge of PV’s time-sequential characteristic and improve upon the computational efficiency, this paper presents a new methodology to evaluate the reliability of the power system with photovoltaic power stations, which combines intelligent state space reduction and a pseudo-sequential Monte Carlo simulation (PMCS). First, a non-aggregate Markov model of photovoltaic output is established, which effectively retains some time-sequential representation of the PV output. Then, the differential evolution algorithm (DE) is introduced into the sampling stage of PMCS to carry out an intelligent state space reduction (ISSR). By using the DE algorithm, success states are searched out and removed, thus the state space is reduced and formed with a high density of loss-of-load. Hence, unnecessary samplings are avoided, which optimizes the PMCS sampling mechanism and improves the computational efficiency. Finally, the proposed method is tested in the modified IEEE RTS-79 system. The results indicate that this new method has a better computational efficiency than the time-sequential Monte Carlo simulation method (TMCS) and pure PMCS. In addition, the effectiveness and feasibility of this method are also verified

    Cross-Language End-to-End Speech Recognition Research Based on Transfer Learning for the Low-Resource Tujia Language

    No full text
    To rescue and preserve an endangered language, this paper studied an end-to-end speech recognition model based on sample transfer learning for the low-resource Tujia language. From the perspective of the Tujia language international phonetic alphabet (IPA) label layer, using Chinese corpus as an extension of the Tujia language can effectively solve the problem of an insufficient corpus in the Tujia language, constructing a cross-language corpus and an IPA dictionary that is unified between the Chinese and Tujia languages. The convolutional neural network (CNN) and bi-directional long short-term memory (BiLSTM) network were used to extract the cross-language acoustic features and train shared hidden layer weights for the Tujia language and Chinese phonetic corpus. In addition, the automatic speech recognition function of the Tujia language was realized using the end-to-end method that consists of symmetric encoding and decoding. Furthermore, transfer learning was used to establish the model of the cross-language end-to-end Tujia language recognition system. The experimental results showed that the recognition error rate of the proposed model is 46.19%, which is 2.11% lower than the that of the model that only used the Tujia language data for training. Therefore, this approach is feasible and effective

    <i>Cunninghamia lanceolata</i> Canopy Relative Chlorophyll Content Estimation Based on Unmanned Aerial Vehicle Multispectral Imagery and Terrain Suitability Analysis

    No full text
    This study aimed to streamline the determination of chlorophyll content in Cunninghamia lanceolate while achieving precise measurements of canopy chlorophyll content. Relative chlorophyll content (SPAD) in the Cunninghamia lanceolate canopy were assessed in the study area using the SPAD-502 portable chlorophyll meter, alongside spectral data collected via onboard multispectral imaging. And based on the unmanned aerial vehicle (UAV) multispectral collection of spectral values in the study area, 21 vegetation indices with significant correlation with Cunninghamia lanceolata canopy SPAD (CCS) were constructed as independent variables of the model’s various regression techniques, including partial least squares regression (PLSR), random forests (RF), and backpropagation neural networks (BPNN), which were employed to develop a SPAD inversion model. The BPNN-based model emerged as the best choice, exhibiting test dataset coefficients of determination (R2) at 0.812, root mean square error (RSME) at 2.607, and relative percent difference (RPD) at 1.942. While the model demonstrated consistent accuracy across different slope locations, generalization was lower for varying slope directions. By creating separate models for different slope directions, R2 went up to about 0.8, showcasing favorable terrain applicability. Therefore, constructing inverse models with different slope directions samples separately can estimate CCS more accurately

    Effects of Anthropogenic Disturbance on the Structure, Competition, and Succession of <i>Abies ziyuanensis</i> Communities

    No full text
    Attention to habitat dynamics in subtropical mid-mountain forest plant communities containing endangered vegetation is critical for understanding the responses of ecosystems to global climate change and for their effective conservation. This study examines the species composition, structure, and interspecies competition within endemic and endangered Abies ziyuanensis (Abies ziyuanensis L.K.Fu and S.L.Mo) communities in China, comparing undisturbed and anthropogenically disturbed conditions. The survey recorded a total of 71 plant species across 39 families and 60 genera. PERMANOVA analysis highlighted significant disparities in species composition between the two forest community conditions. Communities impacted by anthropogenic disturbances showed a higher diversity of shrub and herbaceous species compared to those that were undisturbed, coupled with a significant increase in the number of Abies ziyuanensis seedlings, suggesting a greater potential for self-renewal. Nonetheless, the distribution of diameter class structures in these two community conditions indicates a declining trend in population numbers. In undisturbed Abies ziyuanensis communities, the Weighted Hegyi Competition Index (WCI) for Abies ziyuanensis was 6.04, below the average WCI of 12.24 for all trees within these communities. In contrast, within communities affected by anthropogenic disturbances, the WCI for Abies ziyuanensis reached 7.76, higher than the average WCI of 7.43 for all trees, indicating that Abies ziyuanensis in disturbed communities face heightened competitive pressure compared to undisturbed settings. These findings underscore that previous anthropogenic disturbances have altered the community composition, competition dynamics, growth environment, and succession trends of Abies ziyuanensis communities. While these disturbances promote the regeneration of Abies ziyuanensis, they also reduce its current dominance as a target species

    Integrated transcriptome and metabolome analysis reveals the regulation of phlorizin synthesis in Lithocarpus polystachyus under nitrogen fertilization

    No full text
    Abstract Background Nitrogen (N) is essential for plant growth and development. In Lithocarpus polystachyus Rehd., a species known for its medicinal and food value, phlorizin is the major bioactive compound with pharmacological activity. Research has revealed a positive correlation between plant nitrogen (N) content and phlorizin synthesis in this species. However, no study has analyzed the effect of N fertilization on phlorizin content and elucidated the molecular mechanisms underlying phlorizin synthesis in L. polystachyus. Results A comparison of the L. polystachyus plants grown without (0 mg/plant) and with N fertilization (25, 75, 125, 175, 225, and 275 mg/plant) revealed that 75 mg N/plant fertilization resulted in the greatest seedling height, ground diameter, crown width, and total phlorizin content. Subsequent analysis of the leaves using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detected 150 metabolites, including 42 flavonoids, that were differentially accumulated between the plants grown without and with 75 mg/plant N fertilization. Transcriptomic analysis of the L. polystachyus plants via RNA sequencing revealed 162 genes involved in flavonoid biosynthesis, among which 53 significantly differed between the N-treated and untreated plants. Fertilization (75 mg N/plant) specifically upregulated the expression of the genes phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), and phlorizin synthase (PGT1) but downregulated the expression of trans-cinnamate 4-monooxygenase (C4H), shikimate O-hydroxycinnamoyltransferase (HCT), and chalcone isomerase (CHI), which are related to phlorizin synthesis. Finally, an integrated analysis of the transcriptome and metabolome revealed that the increase in phlorizin after N fertilization was consistent with the upregulation of phlorizin biosynthetic genes. Quantitative real-time PCR (qRT‒PCR) was used to validate the RNA sequencing data. Thus, our results indicated that N fertilization increased phlorizin metabolism in L. polystachyus by regulating the expression levels of the PAL, PGT1, 5-O-(4-coumaroyl)-D-quinate 3’-monooxygenase (C3’H), C4H, and HCT genes. Conclusions Our results demonstrated that the addition of 75 mg/plant N to L. polystachyus significantly promoted the accumulation of flavonoids, including phlorizin, and the expression of flavonoid synthesis-related genes. Under these conditions, the genes PAL, 4CL, and PGT1 were positively correlated with phlorizin accumulation, while C4H, CHI, and HCT were negatively correlated with phlorizin accumulation. Therefore, we speculate that PAL, 4CL, and PGT1 participate in the phlorizin pathway under an optimal N environment, regulating phlorizin biosynthesis. These findings provide a basis for improving plant bioactive constituents and serve as a reference for further pharmacological studies

    Additional file 1 of Association between living arrangements and cognitive decline in older adults: A nationally representative longitudinal study in China

    No full text
    Supplementary Material 1. Supplemental Methods. 1) Demographic characteristics. 2) Health status. 3) Child characteristics. 4) Socioeconomic level. Supplementary tables. Table S1. The questionnaire items of CESD-10 and its answer options and marks assigned. Table S2. Baseline characteristics between participants included and not included. Table S3 Sensitivity analysis of the association between living arrangements and cognitive decline. Table S4 Sensitivity analysis of gender differences in the association between living arrangements and cognitive decline
    corecore