5,724 research outputs found

    Analytical Blowup Solutions to the Pressureless Navier-Stokes-Poisson Equations with Density-dependent Viscosity in R^N

    Full text link
    We study the N-dimensional pressureless Navier--Stokes-Poisson equations with density-dependent viscosity. With the extension of the blowup solutions for the Euler-Poisson equations, the analytical blowup solutions,in radial symmetry, in R^N are constructed.Comment: 12 Pages, more detail in the introduction to explain the validity of the mode

    Classical capacity of the lossy bosonic channel: the exact solution

    Full text link
    The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version

    Minimum-error discrimination between symmetric mixed quantum states

    Full text link
    We provide a solution of finding optimal measurement strategy for distinguishing between symmetric mixed quantum states. It is assumed that the matrix elements of at least one of the symmetric quantum states are all real and nonnegative in the basis of the eigenstates of the symmetry operator.Comment: 10 page

    Operational Theory of Homodyne Detection

    Full text link
    We discuss a balanced homodyne detection scheme with imperfect detectors in the framework of the operational approach to quantum measurement. We show that a realistic homodyne measurement is described by a family of operational observables that depends on the experimental setup, rather than a single field quadrature operator. We find an explicit form of this family, which fully characterizes the experimental device and is independent of a specific state of the measured system. We also derive operational homodyne observables for the setup with a random phase, which has been recently applied in an ultrafast measurement of the photon statistics of a pulsed diode laser. The operational formulation directly gives the relation between the detected noise and the intrinsic quantum fluctuations of the measured field. We demonstrate this on two examples: the operational uncertainty relation for the field quadratures, and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe

    Maine Distributed Solar Valuation Study

    Get PDF
    During its 2014 session, the Maine Legislature enacted an Act to Support Solar Energy Development in Maine. P.L Chapter 562 (April 24, 2014) (codified at 35‐A M.R.S. §§ 3471‐3473) (“Act”). Section 1 of the Act contains the Legislative finding that it is in the public interest is to develop renewable energy resources, including solar energy, in a manner that protects and improves the health and well‐being of the citizens and natural environment of the State while also providing economic benefits to communities, ratepayers and the overall economy of the State. Section 2 of the Act requires the Public Utilities Commission (Commission) to determine the value of distributed solar energy generation in the State, evaluate implementation options, and to deliver a report to the Legislature. To support this work, the Commission engaged a project team comprising Clean Power Research (Napa, California), Sustainable Energy Advantage (Framingham, Massachusetts), Pace Energy and Climate Center at the Pace Law School (White Plains, New York), and Dr. Richard Perez (Albany, New York). Under the project, the team developed the methodology under a Commission‐run stakeholder review process, conducted a valuation on distributed solar for three utility territories, and developed a summary of implementation options for increasing deployment of distributed solar generation in the State. The report includes three volumes which accompany this Executive Summary: Volume I Methodology; Volume II Valuation Results; Volume III Implementation Options

    On the Relationship between Resolution Enhancement and Multiphoton Absorption Rate in Quantum Lithography

    Get PDF
    The proposal of quantum lithography [Boto et al., Phys. Rev. Lett. 85, 2733 (2000)] is studied via a rigorous formalism. It is shown that, contrary to Boto et al.'s heuristic claim, the multiphoton absorption rate of a ``NOON'' quantum state is actually lower than that of a classical state with otherwise identical parameters. The proof-of-concept experiment of quantum lithography [D'Angelo et al., Phys. Rev. Lett. 87, 013602 (2001)] is also analyzed in terms of the proposed formalism, and the experiment is shown to have a reduced multiphoton absorption rate in order to emulate quantum lithography accurately. Finally, quantum lithography by the use of a jointly Gaussian quantum state of light is investigated, in order to illustrate the trade-off between resolution enhancement and multiphoton absorption rate.Comment: 14 pages, 7 figures, submitted, v2: rewritten in response to referees' comments, v3: rewritten and extended, v4: accepted by Physical Review

    Readability of Instructional Materials and Usability of Online Learning Environment: Their Relations to the Development of Authentic and Contingent Knowledge

    Get PDF
    This research project correlates authentic knowledge with the readability of instructional materials and contingent knowledge with usability of the online learning environment. Based on thematic analyses in above two areas, we propose a model that governs how adult learners develop authentic and contingent knowledge in an intertwined manner

    Multi-Dimensional Hermite Polynomials in Quantum Optics

    Full text link
    We study a class of optical circuits with vacuum input states consisting of Gaussian sources without coherent displacements such as down-converters and squeezers, together with detectors and passive interferometry (beam-splitters, polarisation rotations, phase-shifters etc.). We show that the outgoing state leaving the optical circuit can be expressed in terms of so-called multi-dimensional Hermite polynomials and give their recursion and orthogonality relations. We show how quantum teleportation of photon polarisation can be modelled using this description.Comment: 10 pages, submitted to J. Phys. A, removed spurious fil

    Does nonlinear metrology offer improved resolution? Answers from quantum information theory

    Full text link
    A number of authors have suggested that nonlinear interactions can enhance resolution of phase shifts beyond the usual Heisenberg scaling of 1/n, where n is a measure of resources such as the number of subsystems of the probe state or the mean photon number of the probe state. These suggestions are based on calculations of `local precision' for particular nonlinear schemes. However, we show that there is no simple connection between the local precision and the average estimation error for these schemes, leading to a scaling puzzle. This puzzle is partially resolved by a careful analysis of iterative implementations of the suggested nonlinear schemes. However, it is shown that the suggested nonlinear schemes are still limited to an exponential scaling in \sqrt{n}. (This scaling may be compared to the exponential scaling in n which is achievable if multiple passes are allowed, even for linear schemes.) The question of whether nonlinear schemes may have a scaling advantage in the presence of loss is left open. Our results are based on a new bound for average estimation error that depends on (i) an entropic measure of the degree to which the probe state can encode a reference phase value, called the G-asymmetry, and (ii) any prior information about the phase shift. This bound is asymptotically stronger than bounds based on the variance of the phase shift generator. The G-asymmetry is also shown to directly bound the average information gained per estimate. Our results hold for any prior distribution of the shift parameter, and generalise to estimates of any shift generated by an operator with discrete eigenvalues.Comment: 8 page

    Measuring the quantum statistics of an atom laser beam

    Get PDF
    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.Comment: 4 pages, 3 figure
    corecore