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We propose and analyze a scheme for measuring the quadrature statistics of an atom laser beam using extant
optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling
scheme is used to map the quantum statistics of an incoupled atomic beam to an optical probe beam. A
multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of
de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experi-
mental realizations of the scheme may be tested with existing methods via intensity correlation measurements.
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I. INTRODUCTION

Quantum-atom optics �1–3�, the study of quantum prop-
erties of matter waves, is a rapidly developing subfield of
ultracold atomic physics. Recent experimental progress in-
cludes measurements of intensity correlations of noncon-
densed 20Ne �4�, Hanbury Brown–Twiss correlations �5,6�,
fermion pairing correlations �7�, spatial correlations of den-
sity fluctuations �8�, and sub-Poissonian number fluctuations
�9�. Despite the advances in atom detection techniques that
have made such measurements possible, the information
available is essentially restricted to intensity correlations. As
is well known in quantum optics, probing quantum states
generated by nonlinear interactions requires controllable
phase-sensitive detection. Optical quadratures, analogous to
the momentum and position of a particle, are measured via
homodyne detection �10,11�. This technique has been used
to demonstrate optical squeezing �12,13�, the Einstein-
Podolsky-Rosen �EPR� paradox for photons �14�, and
continuous-variable teleportation �15�. Although interference
measurements �16�, including those using heterodyne-type
techniques �17�, as well as intensity correlation and tomog-
raphic measurements �18� have been performed with bosonic
matter waves, a practical scheme to realize matter wave ho-
modyne detection has not yet been demonstrated.

Proposed methods for producing matter waves in highly
nonclassical states include utilizing the nonlinear atomic in-
teractions to create correlated pairs of atoms via either mo-
lecular down-conversion �19�, spin exchange collisions
�20,21�, or transferring the quantum state of a nonclassical
electromagnetic field to a propagating atomic field �22–24�.
In some of these schemes, it has been demonstrated that
continuous-variable entanglement can be generated between
spatially separated atomic beams �19,23� or between an
atomic beam and an optical beam �25�, which can be used to
perform tests of quantum nonlocality with massive particles.
Although schemes for atomic homodyne measurements have
been proposed these are confined to trapped Bose-Einstein
condensates �BECs� �26–28�, whereas quadrature measure-
ments on free atomic fields will be necessary to observe the
effects mentioned above.

In this work, we propose a scheme for dynamically trans-
ferring quantum information from a propagating atom laser

beam to an optical beam, allowing indirect measurement of
de Broglie wave quadrature variances via optical homodyn-
ing. The strength of this scheme is that it does not require a
mode-matched atomic local oscillator, which would be very
difficult to achieve experimentally. By analogy with optical

quadratures, X̂���= âe−i�+ â†ei�, we may use atomic field op-
erators to define atomic quadratures �19�, and the scheme
that we analyze here is designed to measure the quadratures
of a propagating atomic beam. It involves a reversal of the
successful Raman atom laser output coupling scheme
�29,30�, a variant of which has previously been proposed as
a mechanism for transferring states of a nonclassical optical
field to the outgoing atomic beam �23,25,31�. As we will
show, a two-photon Raman transition allows the atom laser
beam to be incoupled �32� to a large trapped condensate,
with highly efficient transfer of the atomic statistics to an
outgoing optical field.

II. SYSTEM AND EQUATIONS OF MOTION

The scheme �Fig. 1� consists of a trapped condensate and
an incoming atom laser beam of the same species. The inter-
nal Raman energy level configuration allows for stimulated
transitions between the trapped and untrapped fields. These
transitions are stimulated by two optical fields, one of which
is intense �control� and denoted by its Rabi frequency
��x , t�, while the other is much weaker �probe� and denoted

by the field operator Ê�x , t�. We perform our analysis using a
one-dimensional model, described by the Hamiltonian H
=Hatom+Hint+Hlight, with

Hatom = �
j=1

3 � dx �̂ j
†�x�Hj�̂ j�x� , �1�

Hint = �� dx��̂2�x��̂3
†�x���x,t� + H.c.�

+ �g13� dx�Ê�x��̂1�x��̂3
†�x� + H.c.� , �2�
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Hlight =� dx Ê†�x�pcÊ�x� , �3�

where H1=−�2�x
2 /2m+V1�x�, H2=−�2�x

2 /2m+V2�x�,
H3=−�2�x

2 /2m+��0+V3�x�, m is the atomic mass, and

the Vj represent both linear �trapping for �̂1� and nonlinear
�scattering� potentials. �0 is the excitation frequency of the
upper level �3�. The optical control field is ��x , t�
=�23e

i�k0x−��0−��t� where �23 is the Rabi frequency for the

�2�→ �3� transition. �̂1�x�, �̂2�x�, �̂3�x�, and Ê�x� are the an-
nihilation operators for the condensate mode �internal state
�1��, signal beam ��2��, excited-state atoms ��3��, and probe
beam photons, respectively, satisfying the usual bosonic

commutation relations, ��̂i�x� , �̂ j
†�x���=�ij��x−x�� and

�Ê�x� , Ê†�x���=��x−x��. Hlight depends on the speed of light
in vacuum �c� and the momentum operator p=−i��x. The
coupling coefficient is g13= �d13/��	��k /2�0A, where d13 is
the electric dipole moment for the �1�→ �2� transition, ��k
=kc, and A is the cross-sectional area of the coupling region
�we use A corresponding to a control laser beam waist of
100 	m�. We neglect interatomic interactions on the basis
that the atomic beam is dilute and the process will take place
over a time short enough that any phase diffusion effects will
be minimal. We now introduce the rotating-frame fields

�̃3�x�= �̂3�x�ei��0−��t and Ẽ�x�= Ê�x�ei��0−��t and adiabatically
eliminate the weakly occupied intermediate state �25,31�
�̃3�x�→−��23/��eik0x�̂2�x�− �g13/��Ẽ�x��̂1�x�. We approxi-
mate the highly occupied condensate as a coherent state,

�̂1�x , t�=
�x , t�
��̂1�x , t��, while allowing the occupation
and the spatial shape to change. To simplify notation we set

�̂2
 �̂ to arrive at the equations of motion

i�̂
˙ �x� = Ha�̂�x� − �C�x�e−ik0xẼ�x� , �4�

iẼ
˙ �x� = HbẼ�x� − �C

* �x�eik0x�̂�x� , �5�

i
̇�x� = H

�x� −
g13�23

�
eik0x�Ê†�x��̂�x�� �6�

with Ha=−��x
2 /2m− ��23�2 /�, Hb=−ic�x− �
�x��2�g13�2 /�

+�−�0, H
=−��x
2 /2m+V1�x� /�− �Ê†�x�Ê�x���g13�2 /�, and

�C�x�=
�x��23
* g13/�. As shown in Ref. �31�, equations of

this type can be efficiently solved to give all relevant observ-
ables.

III. SIMULATIONS

We now consider two special cases to determine the ac-
curacy and limitations of the scheme: an atom laser pulse
and a continuous atom laser beam. To understand the transfer
of quantum information in the system, we must define
mode-matched quadratures �19� which characterize the probe
light and the atomic signal. We define a mode of the
atomic ��=�� or optical ��=E� field, L��x , t�, and the

operators â�=�
x1

�
x2

�

dx L�
*�x , t��̂�x , t�, with the normalization

�
x1

�
x2

�

dx L�
*�x , t�L��x , t�=1, satisfying �â� , â��

† �=����. The mode-

matched quadratures X̂�
+= â�+ â�

†, X̂�
−= i�â�

†− â�� have commu-

tator �X̂�
+ , X̂��

− �=2i���� and uncertainty relation V�X̂�
+�V�X̂�

−�
�1.

A. Atom laser pulse

We first consider an amplitude-squeezed atomic pulse
propagating into the interaction region, with a weak optical
probe field �linear intensity 1.910−7 m−1� incident on the
condensate. This defines the transverse mode of the emitted
probe photons. The atomic, pump, and probe wave vectors
are 2k0, −k0, and k0, respectively, with k0=8106 m−1, giv-
ing an atom laser beam velocity of vatom=1.1 cm s−1. The
input pulse L��x ,0� is a Gaussian of width �x=100 	m con-
taining n0=5103 atoms. We use N0=106 condensate at-
oms, trapped with potential V1�x�=m�t

2x2 /2, with frequency
�t=5 Hz. In all cases we operate at the optimal efficiency
point for the signal so that the ratio of the condensate width
to the mean beam velocity is tuned to one quarter of a Rabi
cycle, TRabi4	� /m�t�m /2�k0� �25�. The input atom laser
pulse is modeled as an X�

+-squeezed minimum uncertainty

state with V�X̂�
±�=e�2r, where r ��0� parametrizes the de-

gree of squeezing. Figure 2�a� shows the field intensities
when the pulse is almost half incoupled. When the probe is
initially in the vacuum state there is no outcoupling and the
incoupling is almost perfectly efficient. In the presence of a
continuous weak probe �shown here� some outcoupling also
occurs. The probe quadrature variances for both cases are
plotted in Fig. 2�b�. The incident probe light and the outcou-
pling dynamics have a negligible effect on the quadrature
signal when compared with the vacuum probe case �identical
on this scale�. The squeezing of the input pulse is transmitted
to the probe, allowing the quadrature statistics of the atom
laser to be read out via optical homodyne detection of the
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FIG. 1. Schematic of a Raman atom laser incoupler. �a� � con-
figuration of three-level atoms. An untrapped beam of �2� atoms is
coupled to a trapped state �1� via a Raman transition. The two

optical fields are a weak probe beam �annihilation operator Ê�x , t��,
and a control beam ���x , t��, modeled by a classical field. The
transition is detuned from the intermediate state by �. Wide lines
represent highly occupied states. �b� Spatial configuration of the

Raman atom laser system. Beam atoms �field operator �̂2�x , t��
reach the condensate ��̂1�x , t�� with momentum 2�k0, which is
transferred during incoupling by absorption and emission of light
quanta with momenta ��k0 along the propagation axis.
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probe light. This result demonstrates a limitation of pulsed
dynamics: the squeezed quadrature of the probe shows less
squeezing than the input atomic pulse. While the effect is not
always large, it is significant for the chosen scenario because
the spatial extent of the squeezed pulse is much larger than
the condensate. The signal degrades because different parts
of the same atomic wave packet are subject to different Rabi
frequencies while traveling across the interaction region.

B. Atom laser beam

We now show that for continuous, essentially monochro-
matic, squeezed atom laser input �31� the spatial effects are
removed and the scheme efficiently maps the physical vari-
ances of the beam to the probe. Figure 3 shows the Raman
incoupling dynamics. The system now consists of a squeezed
atom laser beam in a nearly monochromatic state �wave vec-
tor 2k0� which enters from the left. The atoms are incoupled

via the reversed Raman scheme, emitting probe photons.
Once the front of the beam crosses the interaction region the
system is approximately in a steady state �except for the
gradual transfer of atoms into the trapped condensate�, with a
constant probe output. We see that the quadrature variances
of the emitted probe light reach steady-state values very
close to the atom laser variances.

IV. ATOM COUNTING STATISTICS

To provide a test of the scheme that could be carried out
independently, we now show analytically that the local g�2�

can be extracted from the probe field with high efficiency. In
fact we derive a more general result relating g�

�2��x ,x , t�

��̂†�x , t��̂†�x , t��̂�x , t��̂�x , t�� / ��̂†�x , t��̂�x , t��2 to the initial
state of the atom laser beam and the probe field. Since the
system is linear we may introduce a linear ansatz for the field

operators �̂�x , t�= f��x , t�â0+h��x , t�b̂0, where the evolution
of f� ,h� gives the field time development and the initial
states are given by the single-mode bosonic operators â0 �at-

oms� and b̂0 �33�. For the systems we consider, one of �b̂0� or
�â0� is zero, and the atom laser beam and optical probe are
initially uncorrelated. We immediately find

g�
�2��x,x,t� =

�f��x,t��4�â0
†â0

†â0â0� + �h��x,t��4�b̂0
†b̂0

†b̂0b̂0� + 4�f��x,t��2�h��x,t��2�â0
†â0��b̂0

†b̂0�

�f��x,t��4�â0
†â0�2 + �h��x,t��4�b̂0

†b̂0�2 + 2�f��x,t��2�h��x,t��2�â0
†â0��b̂0

†b̂0�
, �7�
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FIG. 2. Incoupling an atom laser pulse. �a� Squeezed atomic
pulse �4 dB in the X+ quadrature, dashed line� of n0=5103 atoms
initially centered at x=−600 	m, with momentum wave vector 2k0,
is coupled into the condensate �chain line�. The probe field �solid
line� has peak intensity occurring at t=54 ms shown here, which is
when the maximum of the pulse is centered on the condensate. The
atom pulse and optical probe are magnified by factors of 1000 and
1000mc /2�k0 to plot them on the condensate scale. �b� Time devel-
opment of the probe quadratures. A value of less than 1 demon-
strates quadrature squeezing and the chain lines give the atomic
variances.
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FIG. 3. Incoupling a continuous atom laser beam. �a� Snapshot
of the atomic beam �dashed line�, condensate �chain line�, and
probe �solid line� during incoupling. �b� Development of the optical
quadratures �solid lines� as the front of the atom laser beam crosses
the interaction region. The zero of the time axis is arbitrary. The
chain lines show the variances of the 4 dB squeezed atomic beam.
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where the field density ��̂�x , t��̂�x , t�� is nonzero. The case of
special interest here is when the optical probe is initially in
the vacuum state, so that h��x , t�
h��x ,0�=0 and
g�

�2��x ,x , t�= �â0
†â0

†â0â0� / �â0
†â0�2, where defined. This demon-

strates that g�
�2��x ,x , t� is mapped to the emitted probe light

under Raman incoupling evolution. This correlation can be
directly measured �9�, potentially providing a test of the
scheme that does not require quadrature information.

DISCUSSION AND CONCLUSIONS

Apart from the stability of the lasers used, the main
sources of possible signal degradation are spontaneous emis-
sion losses and phase noise due to atomic collisions. The
effect of spontaneous emission can be estimated from the
spontaneous emission rate for a transition with energy �0
=k0c radiating into a continuum, �sp=k0

3 �d13�2 /3���0. The
total spontaneous loss during the incoupling is then Lsp

=�sp�dx�dt��̂3
†�x , t��̂3�x , t��. Using the adiabatically elimi-

nated expression for the excited state ��̂3
†�x , t��̂3�x , t��

��̂2
†�x , t��̂2�x , t����23/��2, and the fact that each excited

atom on average remains excited for time TRabi /4, we have

Lsp��spN̄3TRabi /4, where N̄3 is the total number of excited-
state atoms transferred per squeezed mode. For the incou-

pling process to remain coherent, we require Lsp / N̄3�1, and
upon integration over the entire input pulse for our param-

eters we find Lsp / N̄30.04. We can now estimate the effect
on the signal phenomenologically using a beam splitter
that mixes the signal and vacuum with reflectivity �

�0.04 here�. The probe variances then become V�X̂E
±�

= �1−��V�X̂�
±�+�, acceptable for small �.

The collisions between the incoming and the trapped at-
oms will have two undesired effects. First, there will be a
mean-field shift to the condensate energy which will tend to
rotate the quadrature phases. This will be negligible when the
number of incoupled atoms is much smaller than the conden-
sate occupation. This is likely to be the case in any practical
realization of the scheme. The second effect will be that of
phase diffusion of the beam, which to a first approximation
will cause an increase in the variance of the phase quadra-
ture. We may consider this effect by noting that the velocity
transferred to 23Na by the Raman transition can be up to
6 cm/s, with up to 1.2 cm/s for 87Rb. Using a single-mode
expression for the phase diffusion �34� and the parameters of

Fig. 2, we find that 23Na can travel up to 3 mm and 87Rb up
to 600 	m in their respective coherence times. As this is
larger than the diameter of the present condensates, the effect
will be small. Another issue that will arise is that the probe
beam will be emitted into a narrow cone rather than as a
well-collimated beam. This can be simply overcome using
linear optical elements.

Another important consideration is the role of condensate
phase in our scheme. Although for simplicity we have treated
the BEC as a coherent state, in practice this does not pose a
significant restriction. A reasonable model for a BEC is a
coherent state with an a priori random phase. It is clear from
Eqs. �4�–�6� that the dynamics are sensitive to the phase of

�x�. However, from our numerical simulations we have
found that changing the initial phase of the condensate sim-
ply rotates the phase space quadratures of the output optical
field, so that for any given experimental run the spontane-
ously chosen phase will be automatically compensated for
when all angles are scanned over during optical homodyne
detection.

Finally, we address the effect of a thermal component on
the phase stability of the condensate during incoupling. Since
phase diffusion is most significant at high temperatures, we
use quantum kinetic theory �35�. One immediately finds that
during the incoupling interaction time the phase diffusion is
entirely negligible for the condensate parameters we have
used here, assuming a temperature of order �100 nK. The
decay of the relevant two-time correlation function, namely,
�
†�x , t�
�x� , t��� �where 
�x , t� is the condensate field op-
erator�, is typically at the level of one part in 108 during the
incoupling time.

In conclusion, we have shown that a Raman incoupler
scheme may be used as a means to measure the quantum
statistics of an atom laser by transferring quadrature vari-
ances to an optical probe on which standard homodyne mea-
surements may be made. Experimental realization of our pro-
posal would allow access to quantum features of matter
fields, including demonstrations of squeezing, entanglement
between atomic beams, atom-light entanglement, and the
EPR paradox with matter waves, which are not available
with other methods.

ACKNOWLEDGMENTS

We thank M. J. Davis, P. D. Drummond, and Y. Castin for
stimulating input. This work was supported by the Australian
Research Council.

�1� G. Lenz, P. Meystre, and E. M. Wright, Phys. Rev. Lett. 71,
3271 �1993�.

�2� S. L. Rolston and W. D. Phillips, Nature �London� 416, 219
�2002�.

�3� P. L. Knight, Science 310, 631 �2005�.
�4� M. Yasuda and F. Shimizu, Phys. Rev. Lett. 77, 3090 �1996�.
�5� M. Schellekens et al., Science 310, 648 �2005�.
�6� C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N.

Price, and M. G. Raizen, Phys. Rev. Lett. 95, 260403 �2005�.
�7� M. Greiner, C. A. Regal, J. T. Stewart, and D. S. Jin, Phys.

Rev. Lett. 94, 110401 �2005�.
�8� S. Fölling et al., Nature �London� 434, 481 �2005�.
�9� A. Öttl, S. Ritter, M. Köhl, and T. Esslinger, Phys. Rev. Lett.

95, 090404 �2005�.
�10� H. P. Yuen and J. H. Shapiro, in Coherence and Quantum

Optics IV, edited by L. Mandel and E. Wolf �Plenum, New

BRADLEY et al. PHYSICAL REVIEW A 76, 033603 �2007�

033603-4



York, 1978�.
�11� M. J. Collett, R. Loudon, and C. W. Gardiner, J. Mod. Opt. 34,

881 �1987�.
�12� R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F.

Valley, Phys. Rev. Lett. 55, 2409 �1985�.
�13� L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett.

57, 2520 �1986�.
�14� Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys.

Rev. Lett. 68, 3663 �1992�.
�15� A. Furusawa et al., Science 282, 706 �1998�.
�16� M. R. Andrews et al., Science 275, 637 �1997�.
�17� Z. Hadzibabic et al., Nature �London� 441, 1118 �2006�.
�18� K. L. Moore, S. Gupta, K. W. Murch, and D. M. Stamper-

Kurn, Phys. Rev. Lett. 97, 180410 �2006�.
�19� K. V. Kheruntsyan, M. K. Olsen, and P. D. Drummond, Phys.

Rev. Lett. 95, 150405 �2005�.
�20� L.-M. Duan, A. Sørensen, J. I. Cirac, and P. Zoller, Phys. Rev.

Lett. 85, 3991 �2000�.
�21� H. Pu and P. Meystre, Phys. Rev. Lett. 85, 3987 �2000�.
�22� H. Jing, J.-L. Chen, and M.-L. Ge, Phys. Rev. A 63, 015601

�2000�.
�23� S. A. Haine and J. J. Hope, Phys. Rev. A 72, 033601 �2005�.

�24� M. Fleischhauer and S. Gong, Phys. Rev. Lett. 88, 070404
�2002�.

�25� S. A. Haine, M. K. Olsen, and J. J. Hope, Phys. Rev. Lett. 96,
133601 �2006�.

�26� J. F. Corney and G. J. Milburn, Phys. Rev. A 58, 2399 �1998�.
�27� C. P. Search, Phys. Rev. A 64, 053606 �2001�.
�28� B. R. da Cunha and M. C. de Oliveira, Int. J. Mod. Phys. B 20,

1671 �2006�.
�29� G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A 55,

3631 �1997�.
�30� E. W. Hagley et al., Science 283, 1706 �1999�.
�31� S. A. Haine and J. J. Hope, Laser Phys. Lett. 2, 597 �2005�.
�32� V. V. Paranjape, P. V. Panat, and S. V. Lawande, Int. J. Mod.

Phys. B 17, 4465 �2003�.
�33� This ansatz is used to exactly solve the equations of motion

numerically �31�, and is introduced here for normally ordered
operator averages.

�34� M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M.
Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A
58, 4824 �1998�.

�35� C. W. Gardiner and P. Zoller, Phys. Rev. A 58, 536 �1998�.

RAMAN SCHEME TO MEASURE THE QUANTUM … PHYSICAL REVIEW A 76, 033603 �2007�

033603-5


