32 research outputs found

    Milk Consumption Across Life Periods in Relation to Lower Risk of Nasopharyngeal Carcinoma: A Multicentre Case-Control Study

    Get PDF
    Background: The much higher incidence of nasopharyngeal carcinoma (NPC) in men suggests sex hormones as a risk factor, and dairy products contain measurable amounts of steroid hormones. Milk consumption has greatly increased in endemic regions of NPC. We investigated the association between NPC and milk consumption across life periods in Hong Kong.Methods: A multicentre case-control study included 815 histologically confirmed NPC incident cases and 1,502 controls who were frequency-matched on age and sex at five major hospitals in Hong Kong in 2014–2017. Odds ratios (ORs) of NPC (cases vs. controls) for milk consumption at different life periods were estimated by unconditional logistic regression, adjusting for sex, age, socioeconomic status score, smoking and alcohol drinking status, exposure to occupational hazards, family history of cancer, IgA against Epstein-Barr virus viral capsid antigen, and total energy intake.Results: Compared with abstainers, lower risks of NPC were consistently observed in regular users (consuming ≥5 glasses of milk [fresh and powdered combined] per month) across four life periods of age 6–12 (adjusted OR 0.74, 95% CI 0.54–0.86), 13–18 (0.68, 0.55–0.84), 19–30 (0.68, 0.55–0.84), and 10 years before recruitment (0.72, 0.59–0.87). Long-term average milk consumption of ≤2.5, >2.5, and ≤12.5, >12.5 glasses per month yielded adjusted OR (95% CI) of 1.00 (0.80–1.26), 0.98 (0.81–1.18), 0.95 (0.76–1.18), and 0.55 (0.43–0.70), respectively (all P-values for trend < 0.05).Conclusion: Consumption of milk across life periods was associated with lower risks of NPC. If confirmed to be causal, this has important implications for dairy product consumption and prevention of NPC

    Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri

    Get PDF
    Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution of respiratory chemoreceptors, their neurochemical coding and function as well as physiological evidence for the gill or skin as site for O2 and CO2 sensing are currently not known. In the present study we assessed the distribution of serotonin, acetylcholine, catecholamines and nitric oxide in the neuroepithelial cells (NECs) of the mudskipper gill and skin epithelium using immunohistochemistry and confocal microscopy. Colocalization studies showed that 5-HT is coexpressed with nNOS, Na+/K+-ATPase, TH and VAChT; nNOS is coexpressed with Na+/K+-ATPase and TH in the skin. In the gill 5-HT is coexpressed with nNOS and VAhHT and nNOS is coexpressed with Na+/K+-ATPase and TH. Acetylcholine is also expressed in chain and proximal neurons projecting to the efferent filament artery and branchial smooth muscle. The serotonergic cells c labeled with VAChT, nNOS and TH, thus indicating the presence of NEC populations and the possibility that these neurotransmitters (other than serotonin) may act as primary transmitters in the hypoxic reflex in fish gills. Immunolabeling with TH antibodies revealed that NECs in the gill and the skin are innervated by catecholaminergic nerves, thus suggesting that these cells are involved in a central control of branchial functions through their relationships with the sympathetic branchial nervous system. The Na+/K+-ATPase in mitochondria-rich cells (MRCs), which are most concentrated in the gill lamellar epithelium, is colabeled with nNOS and associated with TH nerve terminals. TH-immunopositive fine varicosities were also associated with the numerous capillaries in the skin surface and the layers of the swollen cells. Based on the often hypercapnic and hypoxic habitat of the mudskippers, these fishes may represent an attractive model for pursuing studies on O2 and CO2 sensing due to the air-breathing that increases the importance of acid/base regulation and the O2-related drive including the function of gasotransmitters such as nitric oxide that has an inhibitory (regulatory) function in ionoregulation.This research was supported by project PAN LAB PONA3_00166. The authors would like to thank Michał Ignaszewski (TDT) for his kind help in statistical analysis

    MEMBRANE TRANSPORT AND METABOLISM OF INOSITOL BY HYMENOLEPIS DIMINUTA (CESTODA)

    No full text
    Myoinositol and scylloinositol have been identified qualitatively and quantitatively by gas-liquid chromatography in the cestode worm Hymenolepis diminuta. No myoinosos-2 can be detected. Myoinositol is unevenly distributed throughout the worm; the scolex and germinative region contains more free and phosphatidyl-bound inositol than the more posterior proglottids. This region also contains more lipid-bound phosphorus, less lipid and less water. Myoinositol absorption is more rapid in this anterior region. The absorption of myoinositol by Hymenolepis diminuta involves diffusion at high substrate concentrations and mediated transport at low substrate concentrations. The mediated transport process exhibits saturation kinetics with V(,max) and Kt being 0.0105 (mu)moles/g ethanol extracted dry wt/4 min and 0.0067 mM, respectively. It is sensitive to changes in temperature, pH and sodium ion concentration. D-glucose is a non-competitive inhibitor of myoinositol transport but myoinositol has no effect on D-glucose absorption. Phlorizin interacts competitively with the myoinositol transport system. Various sugar alcohols and amino acids examined have no effect on myoinositol transport. Absorbed myoinositol is incorporated into lipid as phosphatidylinositol but not metabolized to form any other water soluble component. The possible function of inositol in Hymenolepis diminuta is discussed

    Equipping Our Undergraduates With Essential Generic SkillsFor Future Competitiveness: Why, What, When, and How?

    No full text
    Asian Journal of the Scholarship of Teaching and Learning8235-248Singapor

    Is the Coelomic Plasma of Phascolosoma arcuatum (Sipuncula) Hyperosmotic and Hypoionic in Chloride to the External Environment?

    No full text
    Volume: 11Start Page: 879End Page: 88
    corecore