123 research outputs found

    A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A COVID-19 Case Study

    Full text link
    The "Curse of Dimensionality" induced by the rapid development of information science, might have a negative impact when dealing with big datasets. In this paper, we propose a variant of the sparrow search algorithm (SSA), called Tent L\'evy flying sparrow search algorithm (TFSSA), and use it to select the best subset of features in the packing pattern for classification purposes. SSA is a recently proposed algorithm that has not been systematically applied to feature selection problems. After verification by the CEC2020 benchmark function, TFSSA is used to select the best feature combination to maximize classification accuracy and minimize the number of selected features. The proposed TFSSA is compared with nine algorithms in the literature. Nine evaluation metrics are used to properly evaluate and compare the performance of these algorithms on twenty-one datasets from the UCI repository. Furthermore, the approach is applied to the coronavirus disease (COVID-19) dataset, yielding the best average classification accuracy and the average number of feature selections, respectively, of 93.47% and 2.1. Experimental results confirm the advantages of the proposed algorithm in improving classification accuracy and reducing the number of selected features compared to other wrapper-based algorithms

    An empirical study on university students' continuous utilization of fitness apps in China

    Get PDF
    University students in China faced great health challenges. Fitness apps based on smartphones have the potential to provide an innovative approach to the university students to increase physical activities and conduct health management. This study examined how confirmed usefulness and confirmed ease of use of fitness Apps affect the attitudes, intention of recommendation, and continuous use of fitness apps among Chinese university students. The study took a quantitative approach, using online questionnaire to collect data from 552 university students who had experiences using fitness Apps. All data analyses were conducted in R. Pearson’s correlation and multiple linear regression were used to examine associations.Results. Both confirmed usefulness and confirmed ease of use were positively associated with attitude towards fitness Apps and intention of recommending fitness apps to others. However, only confirmed usefulness was positively related to frequency of using fitness apps. Confirmed ease of use was not significantly related to frequency of using fitness apps. We recommend future app-based health interventions targeting on university students to pay more attention to the functionality of the apps and integrate professional instructions into the program designs to help users achieve their goal more effectively.Peer Reviewe

    Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface

    Full text link
    We report nanoscale bandgap engineering via a local strain across the inhomogeneous ferroelectric interface, which is controlled by the visible-light-excited probe voltage. Switchable photovolatic effects and the spectral response of the photocurrent were explore to illustrate the reversible bandgap variation (~0.3eV). This local-strain-engineered bandgap has been further revealed by in situ probe-voltage-assisted valence electron energy-loss spectroscopy (EELS). Phase-field simulations and first-principle calculations were also employed for illustration of the large local strain and the bandgap variation in ferroelectric perovskite oxides. This reversible bandgap tuning in complex oxides demonstrates a framework for the understanding of the opticallyrelated behaviors (photovoltaic, photoemission, and photocatalyst effects) affected by order parameters such as charge, orbital, and lattice parameters

    Fabrication of Submicron Beams with Galvanic Etch Stop for Si in TMAH

    Get PDF
    A novel method has been developed to fabricate submicron beams with galvanic etch stop for Si in TMAH. The different Au:Si area ratios before and after the release of the beams are used to trigger the galvanic etch stop to fabricate submicron single crystal Si beams in standard Si wafers. Before the beams are released from the substrate, the Au electrodes are connected to the substrate electrically. The Au:Si area ratios are much smaller than the threshold value. TMAH etches the Si wafers. After the beams are fully released, they are mechanically supported by the Au wires, which also serve as the galvanic etch stop cathodes. The Au:Si area ratios are much larger than the threshold value. The beams are protected by galvanic etch stop. The thicknesses of the beams are determined by shallow dry etching before TMAH etching. A 530 nm thick beam was fabricated in standard (111) wafers. Experiments showed that the beam thicknesses did not change with over etching, even if the SiO2 layers on the surface of the beams were stripped

    Quantum-squeezing effects of strained multilayer graphene NEMS

    Get PDF
    Quantum squeezing can improve the ultimate measurement precision by squeezing one desired fluctuation of the two physical quantities in Heisenberg relation. We propose a scheme to obtain squeezed states through graphene nanoelectromechanical system (NEMS) taking advantage of their thin thickness in principle. Two key criteria of achieving squeezing states, zero-point displacement uncertainty and squeezing factor of strained multilayer graphene NEMS, are studied. Our research promotes the measured precision limit of graphene-based nano-transducers by reducing quantum noises through squeezed states

    Mcm2 hypomorph leads to acute leukemia or hematopoietic stem cell failure, dependent on genetic context

    Get PDF
    Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes

    SRFR1 Negatively Regulates Plant NB-LRR Resistance Protein Accumulation to Prevent Autoimmunity

    Get PDF
    Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity
    • …
    corecore