120 research outputs found

    Type I IFN Signaling Protects Mice from Lethal SARS-CoV-2 Neuroinvasion.

    Get PDF
    Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro. However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required for restricting virus neuroinvasion, thereby mitigating COVID-19 severity

    Isolation of high quality RNA from Polyporus umbellatus (Pers.) Fries

    Get PDF
    Background: The dried sclerotium of medicinal fungus Polyporus umbellatus (Pers.) Fries has many pharmacological functions such as diuretic and anticancer activity, in which high-content polysaccharides may play an important role. However, RNA isolation is difficult in filamentous fungi and lacking in P. umbellatus. Results: Five methods for RNA extraction from five strains collected from four provinces were assessed for their ability to recover a high-quality RNA applicable for sequence-related amplification polymorphism (SRAP) PCR and GDP-D-mannose pyrophosphorylase (GMP) gene expression profiles. Both A260/A280 and A260/A230 ratios of the best Trizol Plus + RNAiso-mate for Plant Tissue method are around 2 with a yield of 1122.00 \ub1 0.21 ng \u3bcl-1. The Trizol method also showed good quality with the yield 469.60 ng \u3bcl-1. The SRAP PCR amplified clear and polymorphic bands in all five cDNA samples transcribed from RNA by using primer Me4-Em4. GMP gene fragment (1251 bp) was successfully amplified by RT-PCR, suggesting the integrity of isolated RNA. Conclusion:All these results showed that the total RNA isolated by this protocol is of sufficient quality for subsequent molecular applications

    Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma

    Get PDF
    Background: Arsenic trioxide has been demonstrated as an effective anti-cancer drug against leukemia and solid tumors both in vitro and in vivo. However, recent phase II trials demonstrated that single agent arsenic trioxide was poorly effective against hepatocellular carcinoma (HCC), which might be due to drug resistance. Methods: Mutation detection of p53 gene in arsenic trioxide resistant HCC cell lines was performed. The therapeutic effects of arsenic trioxide and Nutlin-3 on HCC were evaluated both in vitro and in vivo. A series of experiments including MTT, apoptosis assays, co-Immunoprecipitation, siRNA transfection, lentiviral infection, cell migration, invasion, and epithelial-mesenchy-mal transition (EMT) assays were performed to investigate the underlying mechanisms. Results: The acquisition of p53 mutation contributed to arsenic trioxide resistance and enhanced metastatic potential of HCC cells. Mutant p53 (Mutp53) silence could re-sensitize HCC resistant cells to arsenic trioxide and inhibit the metastatic activities, while mutp53 overexpression showed the opposite effects. Neither arsenic trioxide nor Nutlin-3 could exhibit obvious effects against arsenic trioxide resistant HCC cells, while combination of them showed significant effects. Nutlin-3 can not only increase the intracellular arsenicals through inhibition of p-gp but also promote the p73 activation and mutp53 degradation mediated by arsenic trioxide. In vivo experiments indicated that Nutlin-3 can potentiate the antitumor activities of arsenic trioxide in an orthotopic hepatic tumor model and inhibit the metastasis to lung. Conclusions: Acquisitions of p53 mutations contributed to the resistance of HCC to arsenic trioxide. Nutlin-3 could overcome arsenic trioxide resistance and inhibit tumor metastasis through p73 activation and promoting mutant p53 degradation mediated by arsenic trioxide

    Enhanced electrical and thermal conductivities of 3D-SiC(rGO, G x ) PDCs based on polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO) precursor containing graphene fillers

    Get PDF
    Abstract(#br)Lightweight 3D-SiC(rGO, G x ) PDCs were fabricated from polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO) precursor added by different amounts of graphene fillers via direct cold molding and pyrolysis at 1400 °C in an easy manner. Results reveal that SiC(rGO, G x ) PDCs consist of β-SiC nanocrystals homogeneously embedded within amorphous SiO x C y /C free , and graphene is well compatible with SiO x C y /C free for void-free bonded interface, efficiently delaying decomposition of SiO x C y phase into β-SiC. The nanocomposite structure provides an ingenious strategy for constructing complexes with good integrity, high ceramic yield, excellent thermal stability, high electrical and thermal conductivities. This improvement is primarily attributed to the presence of graphene with considerably increasing electric-charge carriers and wider phonon-channel. Such 3D-SiC(rGO, G 20% ) PDCs possess satisfying hardness (12.02 GPa), high electrical conductivity (23.82 S cm −1 ) and thermal conductivity (7.47 W m −1 K −1 ), which make them attractive candidates for microelectromechanical systems (MEMS) devices, energy storage/conversion systems and high precision components, etc

    Induction and in vitro alkaloid yield of calluses and protocorm-like bodies (PLBs) from Pinellia ternata

    No full text
    This study investigated the induction and in vitro alkaloid yield of calluses and protocorm-like bodies (PLBs) from Pinellia ternata (Thunb.) Berit (Araceae). We planned to use this material in future studies related to the mass production of medicinally valuable compounds and regulation of alkaloid metabolism. Different combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzyladenine (6-BA), kinetin (Kin), and alpha-naphthaleneacetic acid (NAA) were used to induce callus and PLB formation from P. ternata tuber explants. The results showed that three physiologically distinct calluses were induced by different combinations of 2,4-D, 6-BA, and Kin used in this study. The calluses differed in color, texture, differentiation status, and alkaloid content. The alkaloid content of the three calli types ranged from 0.0175% to 0.0293%. In comparison, the alkaloid content of field-grown tubers was 0.0072%. Many reports have indicated that 2,4-D suppresses the biosynthesis of secondary metabolites; however, our results show that 2,4-D promoted alkaloid production in Pinellia calluses. The combination of NAA + 6-BA induced PLB formation. The PLB alkaloid content of 0.0321% was 1.1 to 1.8 times higher than the alkaloid content of the calluses and 4.5 times higher than the field-grown tubers. In conclusion, the induction of calluses and PLBs with alkaloid content greater than that of field-grown tubers indicates the potential use of these tissue culture materials for bioprocessing alkaloids from P. ternata and for the study of alkaloid metabolism

    <i>Orientia tsutsugamushi</i> Infection Stimulates Syk-Dependent Responses and Innate Cytosolic Defenses in Macrophages

    No full text
    Orientia tsutsugamushi is an obligately intracellular bacterium and an etiological agent of scrub typhus. Human studies and animal models of scrub typhus have shown robust type 1-skewed proinflammatory responses during severe infection. Macrophages (MΦ) play a critical role in initiating such responses, yet mechanisms of innate recognition for O. tsutsugamushi remain unclear. In this study, we investigated whether Syk-dependent C-type lectin receptors (CLRs) contribute to innate immune recognition and the generation of proinflammatory responses. To validate the role of CLRs in scrub typhus, we infected murine bone marrow-derived MΦ with O. tsutsugamushi in the presence of selective Syk inhibitors and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that Mincle/Clec4a and Clec5a transcription was significantly abrogated upon Syk inhibition at 6 h of infection. The effect of Syk inhibition on Mincle protein expression was validated via Western blot. Syk-inhibited MΦ had diminished expression of type 1 cytokines/chemokines (Il12p40, Tnf, Il27p28, Cxcl1) during infection. Additionally, expression of innate immune cytosolic sensors (Mx1 and Oas1-3) was highly induced in the brain of lethally infected mice. We established that Mx1 and Oas1 expression was reduced in Syk-inhibited MΦ, while Oas2, Oas3, and MerTK were not sensitive to Syk inhibition. This study reveals that Syk-dependent CLRs contribute to inflammatory responses against O. tsutsugamushi. It also provides the first evidence for Syk-dependent activation of intracellular defenses during infection, suggesting a role of pattern recognition receptor crosstalk in orchestrating macrophage-mediated responses to this poorly studied bacterium

    The cross-cultural adaptation and psychometric properties of the Graded Chronic Pain Scale-Revised-Simplified Chinese version.

    No full text
    Chronic pain is a prevalent issue worldwide and is a significant contributor to human suffering and disability. The Graded Chronic Pain Scale-Revised has exhibited favorable reliability and validity. However, its applicability yet to be explored in China. We aimed to create a simplified Chinese version of the Graded Chronic Pain Scale-Revised for chronic pain patients by conducting cross-cultural adaptation and psychometric evaluation. This study employs a two- phase design. In phase 1, the Graded Chronic Pain Scale-Revised was cross-culturally translated and adapted in accordance with international guidelines. In phase 2, the simplified Chinese version of the Graded Chronic Pain Scale-Revised was administered to 417 participants along with Numerical Rating Scale to assess its psychometric properties. The final analysis consisted of data from 376 participants. The scale had a Cronbach's α coefficient of 0.944. Moreover, the scale exhibited excellent content validity and was divided into two dimensions: identifying high impact chronic pain; and the Pain, Enjoyment, and General Activities subscale. Exploratory and confirmatory factor analyses revealed that these dimensions had a good model fit. Additionally, the simplified Chinese version of the Graded Chronic Pain Scale-Revised demonstrated good convergent and discriminant validity. The receiver operating characteristic curve demonstrated that grades 2 and 3 had a good predictive effect on limiting participants' work ability, and the area under the receiver operating characteristic curve was equal to 0.91. The present study demonstrates the successful adaptation of the Graded Chronic Pain Scale-Revised into Simplified Chinese, with the revised version exhibiting favorable psychometric properties. This scale addresses the shortcomings of domestic chronic pain grading assessment tools, providing a valuable instrument for evaluating the severity of chronic pain in Chinese clinical practice and serving as a reference and basis for other research related to chronic pain
    • …
    corecore