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Type I IFN Signaling Protects Mice from Lethal SARS-CoV-2

Neuroinvasion

Md Bashir Uddin,* Yuejin Liang,* Shengjun Shao,* Sunil Palani,* Michael McKelvey,† Scott C. Weaver,* and Keer Sun*

*Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and †Department of Experimental Pathology, University of

Texas Medical Branch, Galveston, TX

ABSTRACT

Multiple organ damage is common in patients with severe COVID-19, even though the underlying pathogenic mechanisms remain

unclear. Acute viral infection typically activates type I IFN (IFN-I) signaling. The antiviral role of IFN-I is well characterized in vitro.

However, our understanding of how IFN-I regulates host immune response to SARS-CoV-2 infection in vivo is incomplete. Using a

human ACE2-transgenic mouse model, we show in the present study that IFN-I receptor signaling is essential for protection against

the acute lethality of SARS-CoV-2 in mice. Interestingly, although IFN-I signaling limits viral replication in the lung, the primary

infection site, it is dispensable for efficient viral clearance at the adaptive phase of SARS-CoV-2 infection. Conversely, we found that in

the absence of IFN-I receptor signaling, the extreme animal lethality is consistent with heightened infectious virus and prominent

pathological manifestations in the brain. Taken together, our results in this study demonstrate that IFN-I receptor signaling is required

for restricting virus neuroinvasion, thereby mitigating COVID-19 severity. ImmunoHorizons, 2022, 6: 716–721.

INTRODUCTION

The pandemic coronavirus SARS-CoV-2 warrants critical inves-

tigation of fundamental pathogenic mechanisms. Type I IFNs

(IFN-Is), particularly IFN-a/b, are often recognized as key innate

cytokines for limiting virus replication and promoting adaptive

immune response during acute infection (1�3). The inhibitory

effect of IFN-Is on SARS-CoV-2 replication is well character-

ized in vitro (1, 4�8); however, our understanding of their role

in vivo during COVID-19 pathogenesis remains incomplete.

It has been shown in African green monkeys that SARS-CoV-2

induces localized and sustained upregulation of IFN transcriptomic

pathways in the lung as compared with the quickly resolved sys-

temic responses (9). In a mouse model based on adeno-associated

virus�mediated expression of human angiotensin I�converting

enzyme-2 (hACE2), it has been suggested that IFN-I receptor

signaling does not control SARS-CoV-2 replication, but rather

drives pathological responses (10). In line with this, IFN-I has

been suggested to be involved in COVID-19 pathology in multi-

ple other studies (11�13).

To determine how IFN-I signaling regulates the immune

balance between viral control and pathological response during

SARS-CoV-2 infection in vivo, we have developed an hACE2-

transgenic IFN-I receptor gene-deficient (hACE2Ifnar1!/!) mouse

model via cross breeding Ifnar1!/! mice with the K18-hACE2

strain. Using this human ACE2-transgenic mouse model, we

show that IFN-I receptor signaling is essential for protection

against COVID-19 lethality. Interestingly, hACE2Ifnar1!/! mice
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are competent in T cell recruitment and viral control in the

lung. In contrast, we found that the hypersusceptibility of

hACE2Ifnar1!/! mice is associated with their heightened viral

burden and pathological manifestation in the brain. Taken to-

gether, our data in this study demonstrate that IFN-I signaling

is required for limiting virus neuroinvasion and acute animal

lethality after respiratory SARS-CoV-2 infection.

MATERIALS AND METHODS

Murine model of SARS-CoV-2 infection

Specific pathogen-free C57BL/6 wild-type (WT), Ifnar1!/!, and

K18-hACE2 (14) mice were purchased from The Jackson Labo-

ratory (Bar Harbor, ME) and bred at the University of Texas

Medical Branch (UTMB) following Institutional Animal Care

and Use Committee guidelines. hACE2Ifnar1!/! mice were

generated by crossing Ifnar1!/! mice with the K18-hACE2

strain. Research conducted in this study was reviewed and

approved by UTMB Institutional Biosafety Committee, and all

animal experiments were carried out in accordance with UTMB

Assurance of Compliance with U.S. Public Health Service Policy

on Humane Care and Use of Laboratory Animals, which is on

file with the Office of Protection from Research Risks (National

Institutes of Health).

SARS-CoV-2 strain USA-WA1/2020 was provided by the

World Reference Center for Emerging Viruses and Arboviruses

and originally isolated by the Centers for Disease Control and

Prevention. COVID-19 was induced through intranasal (i.n.)

infection of anesthetized, sex- and age-matched adult mice with

USA-WA1/2020 at 300 or 1500 PFU/mouse in 50 ml of sterile

PBS. Titers of virus stocks and viral levels in the organs of

infected mice were determined by 50% tissue culture-infective

dose assays on Vero E6 cell monolayers. Animal body weight

and mortality were monitored twice daily until day 20 after viral

infection.

Bronchoalveolar lavage cell analysis

Bronchoalveolar lavage fluid (BALF) samples were collected by

making an incision in the trachea and lavaging the lung twice

with 0.8 ml of PBS (pH 7.4). For flow cytometry analysis, BALF

cells were incubated with 2.4G2 mAb against FcgRII/III and

stained with allophycocyanin-conjugated anti-CD11c (BioLegend),

BV510-conjugated anti-CD11b (BioLegend), PE-Cy7�conjugated

anti-Ly6G (clone 1A8, BioLegend), PerCP-Cy5.5�conjugated anti-

Ly6C (BioLegend), BV421-conjugated anti�Siglec-F (BioLegend),

and PE-conjugated anti-TCRb mAbs. The stained cells were

fixed for 24 h in 2% paraformaldehyde before analyzing on a

MACSQuant Analyzer 10 and using FlowJo software for analysis.

Histology analysis

Mice were euthanized 7 d after viral infection, and the lungs

and brains were collected and fixed in 10% neutral buffered

formalin solution for 7 d before histological analyses. Paraffin-

embedded tissues were sectioned to a thickness of 5 mm and

stained with H&E using standard methods. Whole-mount H&E-

stained lung tissues were scanned using a Leica Aperio LV1

scanner and software. Lung tissues were semiquantitatively

assessed at low power (×40) for the proportion of parenchyma

with alveoli containing intraluminal material in the background

of interstitial expansion and inflammation. Each lung was scored

by the relative amount of abnormal tissue as follows: 0, normal, 1,

1�25%; 2, 26�50%; 3, 51�75%; 4, >76% (15). Digital images were

generated using Leica Biosystems Aperio ImageScope 12.

Statistical analysis

Significant differences between experimental groups were

determined using an ANOVA analysis followed by a two-tailed

Student t test (to compare two samples) in GraphPad Prism 9

(GraphPad Software, La Jolla, CA). Survival analyses were per-

formed using the log-rank test. For all analyses, a p value <0.05

was considered to be significant.

RESULTS

IFN-I receptor signaling attenuates COVID-19 lethality

To determine the role of IFN-I signaling in vivo, C57BL/6 WT,

Ifnar1!/!, K18-hACE2 (hACE2_WT), and hACE2Ifnar1!/!

mice were i.n. challenged with SARS-CoV-2 to induce animal

morbidity and mortality. In the absence of human ACE2 ex-

pression, C57BL/6WT and Ifnar1!/! mice did not exhibit any

morbidity after 1500 PFU/mouse of viral infection (Fig. 1A).

Conversely, this viral inoculum resulted in $25% weight loss

and "50% (LD50) mortality in hACE2_WT mice (Fig. 1B). At

the same time, hACE2Ifnar1!/! mice appeared to have delayed

weight loss compared with hACE2_WT controls (Fig. 1A);

nonetheless, their symptoms worsened and all hACE2Ifnar1!/!

FIGURE 1. Ifnar1 deficiency renders K18-hACE2 mice hypersusceptible

to SARS-CoV-2 infection.

(A–D) Body weights (mean 6 SE) and survival of C57BL/6 WT or

Ifnar1!/! mice and hACE2-transgenic WT (hACE2_WT) and Ifnar1!/!

(hACE2Ifnar1!/!) mice after i.n. infection with (A and B) 1500 and (C and D)

300 PFU/mouse of SARS-CoV-2 virus. *p < 0.05, **p < 0.01, ***p < 0.001,

log-rank test. Data shown are representative of at least two independent

experiments.
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animals succumbed to COVID-19 within 10 d (Fig. 1B). After a

lower dose (0.2LD50) of SARS-CoV-2 infection, hACE2_WT

mice exhibited reduced weight loss (<20%) and mortality as

compared with the LD50 infection (Fig. 1C, 1D). In contrast,

none of hACE2Ifnar1!/! mice was able to recover from this

low dose of viral infection, not even an apparent delay in time

to death (Fig. 1D). Taken together, these data indicate that

IFN-I receptor signaling is essential for host resistance to

COVD-19 lethality.

IFN-I receptor signaling is not essential for viral control in

the lung

We next assessed whether IFN-I signaling confers protection

by promoting acute antiviral immunity in the lung. It has been

shown that IFN-I signaling increases monocytes but inhibits

neutrophil recruitment during influenza virus infection (4, 16).

Interestingly, after SARS-CoV-2 infection, FACS analysis of

BALF cells revealed limited neutrophil (CD11b1Ly6G1) accu-

mulation even in the absence of IFN-I signaling (Fig. 2). None-

theless, compared with hACE2_WT controls, hACE2Ifnar1!/!

mice exhibited decreased infiltrating monocytes (CD11b1Ly6C1

and dendritic cells (DCs) (CD11c1Siglec-F!) in the airway

(Fig. 2B). The number of alveolar macrophages (CD11c1

Siglec-F1) was actually increased in hACE2Ifnar1!/! mice as

compared with hACE2_WT controls at 7 d postinfection (dpi).

Of note, hACE2Ifnar1!/! mice exhibited similar airway TCRb
1

T cell infiltration as hACE2_WT controls, despite their de-

creased NK1.11 cells at 7 dpi (Fig. 2B, 2C). These findings sug-

gest that IFN-I signaling promotes monocyte infiltration but is

dispensable for ab T cell recruitment into the airway during

SARS-CoV-2 infection.

To determine whether IFN-I signaling is essential for con-

trolling viral infection in the lung, we examined viral burdens

at days 4 and 7 after SARS-CoV-2 infection. Although there

were "2-fold increased viral titers in hACE2Ifnar1!/! lungs

compared with hACE2_WT controls at 4 dpi (Fig. 3A), both

groups of mice exhibited efficient lung viral clearance by 7 dpi

(Fig. 3B). These results suggest that although IFN-I signaling

contributes to initial inhibition of viral replication, it is not

essential for lung viral control at the adaptive phase of SARS-

CoV-2 infection.

IFN-I receptor signaling inhibits SARS-CoV-2 neuroinvasion

We wanted to examine whether IFN-I signaling is essential for

preventing SARS-CoV-2 systemic invasion, secondary to viral

replication in the lung. Therefore, we evaluated the viral load

in other organs after i.n. infection with 1500 PFU/mouse of

SARS-CoV-2. Infectious virus was barely detectable in the

spleen and kidney of both hACE2_WT and hACE2Ifnar1!/!

mice at 7 dpi (Fig. 3C, 3D), indicating that IFN-I signaling is

dispensable for preventing viral replication in these tissues.

SARS-CoV-2 has demonstrated neuroinvasive properties in

human patients and animal models, even though the underly-

ing mechanism remains unclear (17�23). In agreement with

FIGURE 2. Ifnar1 deficiency does not affect airway T cell recruitment

in response to SARS-CoV-2 infection.

(A) Flow cytometry analysis of BALF immune cells and (B and C) the

numbers of alveolar macrophages (AMs), monocytes/DCs (Mos/DCs),

polymorphonuclear neutrophils (PMNs), and NK1.11 and TCRb
1 T cells

in hACE2_WT and hACE2Ifnar1!/! airways at days 4 and 7 postinfec-

tion with 1500 PFU/mouse of SARS-CoV-2 virus. *p < 0.05, **p < 0.01,

***p < 0.001, t test. Data shown are representative of two independent

experiments.

FIGURE 3. Ifnar1 deficiency is associated with severe neuroinvasion

after SARS-CoV-2 infection.

(A and B) Lung viral titers at 4 (A) and 7 (B) dpi. (C–E) Viral titers in the

spleen (C), kidney (D), and brain (E) at day 7 in hACE2_WT and

hACE2Ifnar1!/! mice after 1500 PFU/mouse of SARS-CoV-2 virus infec-

tion. *p < 0.05, t test. Data shown are representative of two independent

experiments.
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that, we detected infectious virus in the brains at day 7 after

1500 PFU/mouse of SARS-CoV-2 infection (Fig. 3E). Interestingly,

the rate of neuroinvasion in hACE2_WT and hACE2Ifnar1!/!

mice was correlated with their differential mortality after this

high dose of infection. Furthermore, the viral load in the brains

of hACE2Ifnar1!/! mice was significantly higher than that in

hACE2_WT controls (Fig. 3E), indicating a more prominent viral

neuroinvasion and replication in the absence of IFN-I signaling.

Taken together, our data highlight that IFN-I has specific neuro-

protective functions that inhibit SARS-CoV-2 neuroinvasion.

IFN-I receptor signaling attenuates SARS-CoV-2�induced

brain pathology

It has been shown that IFN-I signaling attenuates inflammatory

lung damage and thereby improves host resistance to influenza

virus infection (1, 4). Thus, we investigated whether IFN-I sig-

naling confers similar protection against lung pathology during

SARS-CoV-2 infection. Both hACE2_WT and hACE2Ifnar1!/!

mice exhibited pathological features in the lungs at day 7 after a

low dose (0.2LD50) of SARS-CoV-2 infection (Fig. 4A). Although

hACE2Ifnar1!/! mice tended to have aggravated lung injury,

their histopathological scores were not significantly different

from hACE2_WT controls (Fig. 4B). Thus, lung tissue damage

does not fully account for the acute death of hACE2Ifnar1!/!

mice after this low dose of SARS-CoV-2 infection.

Considering the extensive viral replication in the brains of

hACE2Ifnar1!/! mice, we then investigated whether IFN-I

signaling prevents SARS-CoV-2 neuroinvasion and therefore

direct damage to the CNS. Indeed, compared with hACE2_WT

controls, hACE2Ifnar1!/! mice exhibited more prominent his-

topathological manifestations in the brains, particularly neuropil

vacuolation and multivacuolar structures across brain cortex,

hippocampus, and striatum (Fig. 5). Thus, viral neuroinvasion-

associated brain damage is likely the cause of acute lethality of a

low dose of SARS-CoV-2 in hACE2Ifnar1!/! mice.

DISCUSSION

In the current study, we have revealed a critical role of IFN-I

signaling in preventing SARS-CoV-2 neuroinvasion and brain

damage. IFN-I and IFN-stimulated genes have been identified

in the regulation of blood�brain barrier (BBB) permeability and

the prevention of viral neuroinvasion in infectious mouse models

of West Nile virus, yellow fever virus, and rabies virus (24�26).

During these neurotropic viral infections, IFN-I signaling

improves the antiviral response in the peripheral organs and

thereby restricts viral neuroinvasion. Accordingly, in the absence

of an intact IFN-I signaling pathway, an elevated level of viremia

in the periphery promotes virus transmission into the brain.

In this study, we show that during SARS-CoV-2 respiratory

infection, IFN-I signaling is dispensable for viral control in the

FIGURE 4. SARS-CoV-2 infection induces pathological changes in

the lung.

(A) Lung histopathology (H&E) and (B) histopathologic scores (each sym-

bol represents one mouse) of hACE2_WT (n 5 4) and hACE2Ifnar1!/!

mice (n 5 7) at day 7 after 300 PFU/mouse of SARS-CoV-2 infection.

FIGURE 5. Ifnar1 deficiency is associated with prominent patho-

logical manifestations in the brain.

(A and B) Representative brain histopathology (H&E) of hACE2_WT

(n 5 4) and hACE2Ifnar1!/! mice (n 5 7) at day 7 postinfection with

300 PFU/mouse of SARS-CoV-2 virus. Arrows indicate representa-

tive areas with multivacuolar structures (black) and neuropil vacuo-

lation (red). Scale bars are indicated for each image.
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peripheral organs spleen and kidney. Although IFN-I signaling

contributes to initial inhibition of viral replication in lung, it is

not essential for viral control at the adaptive phase, as evidenced

by 100-fold decreased viral burdens from day 4 to 7 after SARS-

CoV-2 infection of hACE2Ifnar1!/! mice (Fig. 4). Thus, rather

than a general defect in antiviral immunity at the initial infection

site or systemically, the increased viral titers in the brains of

hACE2Ifnar1!/! mice could reflect brain-specific viral invasion

and replication in the absence of intact IFN-I signaling. In line

with this, it has been shown that neuroinvasion by hepatotropic

mouse hepatitis virus depends on the direct impairment of tight

junctions, and IFN-b production by infected microvascular endo-

thelial cells prevents transmission of blood-borne viruses to the

brain (27).

In contrast, IFN-I has been shown to play an anti-inflammatory

role by upregulating IL-10 and downregulating the IFN-g re-

sponse during influenza virus infection (16, 28). In the absence of

IFN-I regulation, the increased inflammatory cytokine response

could cause tissue damage and contribute to the disruption of the

BBB, as known with other neurotropic viral and bacterial infec-

tions (29�31). Nonetheless, further studies are necessary to fully

establish whether IFN-I signaling prevents SARS-CoV-2 neuroin-

vasion by restricting BBB permeability and/or inhibiting viral rep-

lication in the brain.

In conclusion, our results in this study indicate that IFN-I

signaling is critical for preserving the integrity of CNS during

SARS-CoV-2 infection. In agreement, it has been recently dem-

onstrated that recessive deficiencies of IFN-I immunity underlie

severe COVID-19 in unvaccinated children that are otherwise at

lower risk for COVID-19 than unvaccinated adults (32). Thus, an

improved understanding of mechanisms by which the immune

system regulates protection against CNS infection will provide

insights into the key virus�host interactions that decide acute

and long-term sequelae of COVID-19.
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