121 research outputs found

    Automatic domain ontology extraction for context-sensitive opinion mining

    Get PDF
    Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline

    Perfect codes in quintic Cayley graphs on abelian groups

    Full text link
    A subset CC of the vertex set of a graph Γ\Gamma is called a perfect code of Γ\Gamma if every vertex of Γ\Gamma is at distance no more than one to exactly one vertex in CC. In this paper, we classify all connected quintic Cayley graphs on abelian groups that admit a perfect code, and determine completely all perfect codes of such graphs

    Perfect codes in 2-valent Cayley digraphs on abelian groups

    Full text link
    For a digraph Γ\Gamma, a subset CC of V(Γ)V(\Gamma) is a perfect code if CC is a dominating set such that every vertex of Γ\Gamma is dominated by exactly one vertex in CC. In this paper, we classify strongly connected 2-valent Cayley digraphs on abelian groups admitting a perfect code, and determine completely all perfect codes of such digraphs

    CAT: LoCalization and IdentificAtion Cascade Detection Transformer for Open-World Object Detection

    Full text link
    Open-world object detection (OWOD), as a more general and challenging goal, requires the model trained from data on known objects to detect both known and unknown objects and incrementally learn to identify these unknown objects. The existing works which employ standard detection framework and fixed pseudo-labelling mechanism (PLM) have the following problems: (i) The inclusion of detecting unknown objects substantially reduces the model's ability to detect known ones. (ii) The PLM does not adequately utilize the priori knowledge of inputs. (iii) The fixed selection manner of PLM cannot guarantee that the model is trained in the right direction. We observe that humans subconsciously prefer to focus on all foreground objects and then identify each one in detail, rather than localize and identify a single object simultaneously, for alleviating the confusion. This motivates us to propose a novel solution called CAT: LoCalization and IdentificAtion Cascade Detection Transformer which decouples the detection process via the shared decoder in the cascade decoding way. In the meanwhile, we propose the self-adaptive pseudo-labelling mechanism which combines the model-driven with input-driven PLM and self-adaptively generates robust pseudo-labels for unknown objects, significantly improving the ability of CAT to retrieve unknown objects. Comprehensive experiments on two benchmark datasets, i.e., MS-COCO and PASCAL VOC, show that our model outperforms the state-of-the-art in terms of all metrics in the task of OWOD, incremental object detection (IOD) and open-set detection.Comment: CVPR 2023 camera-ready versio

    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst

    Get PDF
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH Gmb

    Flexoelectricity-stabilized ferroelectric phase with enhanced reliability in ultrathin La:HfO2 films

    Full text link
    Doped HfO2 thin films exhibit robust ferroelectric properties even for nanometric thicknesses, are compatible with current Si technology and thus have great potential for the revival of integrated ferroelectrics. Phase control and reliability are core issues for their applications. Here we show that, in (111)-oriented 5%La:HfO2 (HLO) epitaxial thin films deposited on (La0.3Sr0.7)(Al0.65Ta0.35)O3 substrates, the flexoelectric effect, arising from the strain gradient along the films normal, induces a rhombohedral distortion in the otherwise Pca21 orthorhombic structure. Density functional calculations reveal that the distorted structure is indeed more stable than the pure Pca21 structure, when applying an electric field mimicking the flexoelectric field. This rhombohedral distortion greatly improves the fatigue endurance of HLO thin films by further stabilizing the metastable ferroelectric phase against the transition to the thermodynamically stable non-polar monoclinic phase during repetitive cycling. Our results demonstrate that the flexoelectric effect, though negligibly weak in bulk, is crucial to optimize the structure and properties of doped HfO2 thin films with nanometric thicknesses for integrated ferroelectric applications

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Fe-doped phosphorene for the nitrogen reduction reaction

    Get PDF
    The nitrogen-to-ammonia conversion is one of the most important and challenging processes in chemistry. We have employed spin-polarized density functional theory to propose Fe-doped monolayer phosphorene (Fe-P) as a new catalyst for the N2reduction reaction at room temperature. Our results show that single-atom Fe is the active site, cooperating with P to activate the inert N-N triple bond and reduce N2to NH3via three reliable pathways. Our findings provide a new avenue for single atom catalytic nitrogen fixation under ambient conditions
    • …
    corecore