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Abstract  

The nitrogen-to-ammonia conversion is one of the most important and challenging 

process in chemistry. We have performed spin-polarized density functional theory to 

propose Fe-doped monolayer phosphorene (Fe-P) as a new catalyst for N2 reduction 

reaction at room temperature. Our results show that the single-atom Fe is the active site, 

cooperating with P to activate the inert N-N triple bond and reduce N2 into NH3 via 

three reliable pathways. Our findings provide a new avenue for single atom catalytic 

nitrogen fixation under ambient conditions. 

Keywords: Nitrogen reduction; Electrocatalysis; Phosphorene; Single-atom doping; 

Atomic Iron    



1. Introduction 

Converting the abundant nitrogen (N2) in the Earth’s atmosphere to ammonia (NH3), 

which is so-called nitrogen fixation, is one of the most attractive conversions in 

biochemistry.1-4 To overcome the inertness of N2 molecules, tremendous efforts have 

been devoted to identify the feasible catalytic systems for this transformation 5-7. 

Generally, the industrial fixation of N2 is via the Haber-Bosch process, which is 

primarily used for production of fertilizers.8, 9 However, the Haber-Bosch process 

consume huge amount of energy, which requires high temperatures and high pressures 

of reactants N2 and H2 gases with the aid of Fe or Ru catalysts to break the inert triple 

bond of N2.
10-14 In contrast, the biological N2-fixation, under ambient conditions, 

through the nitrogen-binding enzymes called nitrogenases to activate the N-N bond of 

N2.
4, 11, 15-20 It is essential that the nitrogen fixations through the catalysts of nitrogenases 

undergo six sequential process of protonation and electron transfers. In addition, the N-

N triple bond of N2 have been not cleavaged to adatoms at the first step of the reduction 

process.  

Reduction of dinitrogen at the most successful nitrogenases occurs at a FeMo 

cofactor, which consists of two fused iron-sulfur clusters and can additionally contain 

Mo and/or V atoms,16, 19, 21-27 but the detailed mechanism remains unexplored. Further, 

molecular catalysts have been developed by imitating the biological N2-fixation.2, 16, 21, 

28, 29 They are rather promising catalysts for the reduction reaction of N2 that can occur 

under flexible temperature and pressure. Especially, the product NH3 can be extracted 

friendly from the hydrogen feed gas, and possessing the adjustable operating potential, 

pH, electrolyte, etc., enhancing the production yield of NH3 dramatically.  

It is a remarkable fact that transition metals (TMs) play an indispensable role in this 

catalytic system, especially the element Fe.24, 30-37 For example, Rodriguez et al.30 



propose an iron-potassium system as a support for the N2-fixation, Li et al.35 propose 

FeN3-embedded graphene as the catalyst for nitrogen fixation, Hu et al.36 present 

Fe3+@C3N4 can activate the N2 molecule effectively. Their results suggest that Fe atom 

in the N2-fixation process plays a key role. 

Phosphorene, a monolayer of black phosphorous (P), has recently received much 

attention owing to its novel properties, such as promising electronic properties and high 

carrier mobility. It has found wide applications in38, 39 electronics, optoelectronics, solar 

cells, and catalysts.40-44 Although tremendous progress has been made in the research 

of P, there are few reports about its application in electrocatalysis. In particular, using 

P as the electrocatalyst for electrocatalytic dinitrogen fixation under ambient conditions 

have not been reported.  

Here, we hypothesis that single atom Fe-doped P (Fe-P) can imitate nitrogenases to 

catalyze N2-fixation from first-principles calculations. Our works illustrate that both P 

and Fe-P have the capacity of N2-fixing. Especially, Fe-P can activate the N2 distinctly 

than P because it can release energy when N2 is adsorbed on the surface of Fe-P. 

Moreover, every step is actually exothermic during the reaction process of dinitrogen 

to ammonia. 

 

2. Computational methods  

All calculations are based on the spin-polarized density functional theory (DFT) 

methods by using the Cambridge Serial Total Energy Package (CASTEP) code on the 

basis of the plane-wave pseudopotential. The Perdew-Burke-Ernzerhof (PBE) 

exchange-correlation functional for generalized gradient approximation (GGA)45 was 

employed to optimize all the geometric structures. The van der Waals interaction were 

applied within the Grimme scheme. The cut-off energy was set to 450 eV with a 



Brillouin zone was sampled by a Monkhorst-Pack 5×5×1 K-point grid.46 The process 

of geometry optimization approached the electronic ground state when the energy and 

force on each ion were reduced below 10-6 eV and 0.01 eV/Å. HSE06 calculations was 

performed to get the exact band structure for P. The band gap is 0.92 eV for GGA/PBE, 

and 1.61 eV for HSE06 methods. The band gap of HSE06 calculations was 

comparatively accurate to the experimental and theoretical results.47, 48 To model the 

Fe-P structure, we first built a periodic supercell (3×3) containing 38 P atoms with a 

vacuum of 15 Å in the z-direction. And then, Fe atom anchored on the channel of P, but 

do not remove any P atom at all. Fortunately, we find that the binding energies of Fe 

was -6.88 eV with the cohesive energy of atomic Fe and was -4.17 eV with bulk Fe, 

which is implied that a Fe atom could be anchored in the channel of P. The reaction 

energy was calculated by using the equation: 

∆E=E(Fe-P-N2HX)-E(Fe-P-N2HX-1)-E(H+)-E(e-) 

where E(Fe-P-N2HX) and E(Fe-P-N2HX-1) are the adsorption energy after and before 

the protonation process, 𝐸(H+)  and 𝐸(e−)  represent the energy of proton and 

electron, respectively. The energies of proton and electron were based on the model of 

Lutidinium ([LutH]+) and [CoCp*2], and the total energy of proton and electron was ca. 

-14.70 eV in our work.49 The adsorption energy (Ead) was defined as follows: 

Ead = EF−P/N2HX
− EF−P − EN2HX

 

where EF−P/N2HX
, EF−P, and EN2HX

 are the total energies of F-P with adsorbate, a clean 

surface of F-P, and the isolated adsorbate of N2HX, respectively. 

 

3. Results and discussion   

The optimized lattice parameter of the P predicted in this study is a = 4.62 Å and b = 

3.28 Å (inset of rectangle in Figure 1b), which agrees well with the experimental 



results.50-53 The top view of the P has shown that the thickness of P was ca. 2.08 Å 

(Figure 1a). The P-P bond length of top and down layer was 2.20 Å and 2.24 Å for the 

interlayer length (Figure 1b). For Fe-P, the embedded Fe in the channel of P is shown 

in Figure 1c and d. After the doping of Fe, its adjacent P atom in the top layer upward 

movement and the opposite P atom in the down layer moved down lightly. The 

maximum thickness of Fe-P was 3.36 Å, which is bigger than that of P. Compared with 

the parameter of P, we have shown the changes of relative bond length of Fe-P in the 

Table S1. 

 

 

Figure 1. Optimized structure of (a) top and (b) side view of the (3×3) P supercell. The inset of 

rectangle represents the lattice constants of the unit cell of P and the relevant bond length and angles 

are emphasized with red arrows. Top (c) and side view (d) of the Fe-P with the relevant parameters. 

Pink and gray balls represent the P and Fe atoms, respectively. 

 

The electronic properties, such as bandgap, charge, molecule orbitals and spin 

density distribution of P and Fe-P were studied. These properties were vital for catalysts 

to facilitate N2 adsorption and activate its inert N-N triple bond. Recently research has 

shown that the bandgap of P was cat. 1.5-1.6 eV by using the hybrid functional (HSE06) 

methods, which agrees with relative experimental reports.48 However, the generalized 

gradient approximation methods will underestimate the bandgap of P about 50%. From 



the density of states and band structure (as shown in Figure S1a and b), we can see that 

the bandgap of P was 1.61 eV by using the HSE06 and 0.92 eV for the GGA methods. 

Additionally, the P has a direct bandgap because both valance band maximum and 

conduction band minimum are located in the same high symmetry points G, which is 

in accordance with recent reports.48, 54, 55 After doping Fe, the bandgap of Fe-P is 

decreasing to 0.65 eV with an indirect bandstructure (as shown in Figure S2a and b). 

We can find that both GGA and HSE06 functionals have the same bandstructure, and 

we shew one of them in Figure S2. The indirect bandgap between the high symmetry 

points G and F, as shown in Figure S2b, which is conducive to transfer charges from 

Fe-P to adsorbate and activate the adsorption. 

According to the Mulliken population analysis (as shown in Table S2), the Fe atom 

lose 0.18 e and the charges of adjacent P atoms had been recombined. The P1, P4, P7, P8 

and P11 gained 0.12 e, 0.07 e, 0.07 e, 0.03 e and 0.03e, respectively. On the contrary, 

the P2, P3, P5 and P6 missed 0.04 e, 0.03 e, 0.03 e and 0.03e, respectively. We can find 

that the charges of Fe was transferred to the whole P. Further, the Bader charge analysis 

elucidated that the P got 0.18 e from the doped F atom, which is work in concert with 

the Mulliken population analysis results. 

Additionally, from the highest occupied molecular orbitals (HOMO) of P implied 

that there is a symmetrically distributed electron delocalization (Figure 2a), but the 

electron was located on the Fe atom of Fe-P (Figure 2b). The presence of Fe also 

introduced asymmetric charge and spin density distribution throughout the ground 

state geometry resulting in a high spin density (Figure 2c and d). The positive spin 

density on Fe atom clearly indicates that Fe atom is catalytically active and effective 

for chemisorption. This makes Fe-P a potential candidate for the electrocatalytic N2 

reduction. 



 
 

Figure 2. The highest occupied molecule orbitals of (a) P and (b) Fe-P. (c) Side view and (d) top 

view of spin density distribution. Blue and yellow isosurfaces mean positive and negative spin 

density, respectively.  

 

It is well-recognized that the first step of the electrocatalytic N2 reduction reaction is 

the adsorption of N2 on the catalyst surface. Also this adsorption plays an important 

role in the subsequent reaction pathways. Once it is adsorbed on the catalyst surface 

and activated, the reaction process can be realized at room temperature. We discuss the 

N2 adsorption on the P and Fe-P surface in details.  

  After the structural relaxation, N2 molecule cannot adsorb onto the surface of P, but 

the Fe-P surface with Fe atom doping. Our results show that the adsorption energy was 

-0.81eV, and we can confirm the chemisorption occured on the surface of Fe-P. The 

bond length of N-N triple bond was changed subsequently, the triple bond was 

increased to 1.17 Å for single-contact and 1.19 Å for double- contact. However, the N-

N triple bond did not change and maintained the free N-N bond length of 1.15 Å. Only 

weak physical adsorption occurred on the surface of P with an adsorption energy of 



2.75 eV. These results suggest that Fe-P have a prominent ability to activate inert N-N 

triple bond.  

  To reveal the genuine interaction between nitrogen molecule and catalyst surface, we 

have calculated the density of states (DOS) and shown in Figure 3. For free nitrogen 

molecule (Figure 3a), the orbitals of N2 are σg2s, σμ*2s, πμ2p, σg2p and πg*2p are 

located at -17.78 eV, -3.85 eV, -1.26 eV and 0.00 eV, -7.27 eV, respectively. Moreover, 

the highest occupied molecule orbital (HOMO) and the lowest unoccupied molecular 

orbital (LUMO) is located at σg2p and πg*2p, respectively. Thus, we can obtain the 

bandgap of N2 and it was 8.53 eV, which agrees with the relevant reports.36 The large 

energy gap between the HOMO and LUMO makes proton and electron transfer reaction 

difficult, which is one of the main hurdles in N2 fixation. The inert N2 needs to be 

activated by catalyst to produce ammonia. We have found that the orbitals of N2 in N2-

P (Figure 3b) were the same as free nitrogen molecular orbitals, indicative of a weak 

N2 activation ability of P. Fortunately, both of SN-C (Figure 3c) and DN-C (Figure 3d) 

fashions are enforcing the delocalized electrons of σg2p orbitals significantly. The 

overlap of orbitals between σg2p and πg*2p verified the potent activation ability of Fe-

P for the dinitrogen-to-ammonia conversion at ambient temperature. 



 

Figure 3. Density of states of s and p orbitals of N2. (a) Free nitrogen molecule, (b) N2 adsorbed on 

P, (c) and (d) N2 adsorbed on Fe-P with SN-C and DN-C fashion, respectively. The Fermi level is 

set to zero. 

 

We also calculated the charge density difference to imitate the electrons transfer 

behavior as shown in Figure 4. The blue and yellow isosurfaces represent charge 

accumulation and depletion in the three-dimensional space, respectively. When N2 was 

adsorbed on P, the faint depletion (mapped with yellow isosurfaces, Figure 4a and b) 

of electrons between two N atoms elucidated that P can reduce the bond energy of N-N 

triple bond slightly (as shown in Table S3). However, we have found that plenty of 

electrons accumulate on the surface of two N atoms and a depletion of electrons 

between two atoms apparently (Figure 4c and d). In particular, the DN-C fashion 

(Figure 4e and f) can make the most electron of Fe-P transfer to N2 molecular and 

activate the N-N triple bond extremely.  



 

Figure 4. The charge density difference of N2 molecule adsorbed on the surface: (a) Top view and 

(b) side view of P. (c,d) Top view and side view of Fe-P, the status of N2 is single N atom contact 

(SN-C). (e, f) top view and side view of double N atom contact (DN-C) on Fe-P surface. The blue 

and yellow isosurfaces represent charge accumulation and depletion in the three-dimensional space, 

respectively. 

 

To further evaluate the conversion mechanism of activated dinitrogen to ammonia 

on P-based catalysts, we canvassed the whole six proton/electron reduction process 

undergo three possible pathways, including the distal (abbreviated as ‘Dis’), alternating 

(abbreviated as ‘Alt’) and enzymatic (abbreviated as ‘Enz’) as shown in Figure 5. The 

optimized geometry structures of all the reduction process are displayed in Figure S3. 

From the N2-adsorption and N2-release, there are eight steps for each pathway (e.g. Dis, 

Alt and Enz pathways). We find that P is only undergoing the Dis pathway (Figure 5a). 

The cleavage of N-N triple bond occurred at the fourth step with release of an NH3, and 

the second ammonia was released in the eighth step. Finally, P was regenerated, 

suggesting the feasibility of the N2 reduction reaction process. For Fe-P, both the Dis 

and Alt pathways undergoing in our expectation, but the Enz pathway is an exception. 

It released the intermediate product N2H4 at the fifth step (*NH2-HN*→NH2-NH2), as 



shown in Figure S4. A strong acidic environment may the hinder of emitting N2H4 gas 

and obtain the main product ammonia. Thus, we hypothesis that the protonation process 

of Enz pathway at the fourth step can form a NH* species in the Dis pathway and/or 

H2N-H2N* species in the Alt pathway, respectively. From *NH2-HN* to NH2-NH2, 

HN*+NH3 and H2N-H2N*, the reaction energy in the ascending order was -1.06 eV, -

1.67 eV and -2.34 eV, respectively (Figure S5). It can be concluded that the optimal 

scheme for the H2N-HN* to produce NH3 is from the Enz pathway to Alt pathway.  

   
Figure 5. Schematic depiction of three mechanisms for N2 reduction reaction: (a) P, (b-d), Fe-P. The 

Dis, Alt and Enz represent the Distal, Alternating and Enzymatic pathway, respectively. 

 

We calculated the reaction energy at each step of each pathway, as shown in Figure 

6a, and the relevant data are summarized in Figure S6. It is obvious that almost each 

step released energy except for the first step of P to adsorb N2 molecule (0.44eV). The 

first step of the protonation in Fe-P was exothermic, which suggests that the N2 was 

efficiently activated. Impressively, the N2-to-NH3 conversion can be carried out 

spontaneously in each pathway of Fe-P. It indicates that Fe-P is a promising 

electrocatalyst to convert the N2 to NH3. Figure 6b describes the process of the cleavage 



of N-N bond in each pathway. The detailed data was recorded in Table S3. We can find 

that the practically linear variation of N-N bond length before emitting the first NH3, 

which reflects a gradual protonation process. The monotonically increasing relationship 

between N-N bond length and hydrogenation pathways revealed the potential ability of 

Fe-P to N2-fixation. 

  

Figure 6. (a) Reaction energy and (b) N-N bond length in the N2 reduction reaction process. The N-

N bond length of the first dot in the reaction sequence 0 represents the free N2. 

 

To deep understand the superior catalytic performance of Fe-P on the N2-fixation, 

we carried out charge population analysis. The data of all the charges was illustrated in 

Tabel S4. We divided the intermediates into three moieties: molecule for the bounded 

N, H atoms, P, and Fe atom, respectively. 

It can be seen clearly that there was no electron transfer between molecule N2 and P 

during its adsorption (Figure 7a), which agrees with previous discussion. In the 

following reduction reaction steps, the electron transfered from the P surface to the 

adsorbed molecule. For example, when the adsorbed N2* was reduced to N2H*, the 

formed N2H* species can gain ca. 0.59 electrons from P, and about 1.12 electrons could 

be gained from P to N* and NH3 species. Obviously, the moiety of P served as an 

electron donor during the N2 reduction reaction process. After the Fe doping, the status 



of the charge variation have been recombined, and the P moiety can not only donate 

electrons but also gain electrons from other moieties. The Dis pathway of Fe-P can be 

found in Figure 7b. We found that the P moiety lost electrons in steps 1-2 and 4-5, but 

gained electrons from Fe moiety in steps 3 and 6-7. The Fe moiety started to lose 

electrons at the third step and served as a donor during the following reduction steps. It 

clearly demonstrate that the Fe moiety only acted as a donor offering electrons to other 

moieties, during the Alt-Fe-P (Figure 7c), Enz1-Fe-P (Figure 7d) and Enz2-Fe-P 

(Figure 7e) pathways. The P moiety mainly gained electrons from the Fe moiety, and 

only lost electrons in the third step in both Enz1-Fe-P and Enz2-Fe-P pathways. 

Additionally, we plotted the average charge variation in the five pathways, as illustrated 

in Figure 7f. We can find that P is an electron reservoir, and Fe is the active site for N2-

fixation and the transmitter for electron transfer. There is no doubt that the Fe doped P 

can be a novel catalyst for N2 reduction reaction. 

  

Figure 7. Charge variation of three moieties (molecule, P and Fe) along the pathway (a) Dis-P, (b) 

Dis-Fe-P, (c) Alt-Fe-P, (d) Enz1-Fe-P, (e) Enz2-Fe-P, respectively. (f) Mean charge variation of 

various moieties. 

 

4 Conclusion    



In summary, we have performed spin-polarized density functional theory to propose 

a new catalyst for N2 reduction reaction at room temperature. The single atom (such as 

Fe) doped in the MP is the active site and plays a vital role in the N2-to-NH3 conversion. 

Our results suggest that the Fe-P catalyst is a great potential single atom catalyst with 

high efficiency catalyst for N2 reduction reaction. This work reveals that the single atom 

(TM), collaborating with 2D layered materials (P) can be a novel candidate catalyst to 

N2-fixation. 
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