6 research outputs found

    HII region G46.5-0.2: the interplay between ionizing radiation, molecular gas and star formation

    Get PDF
    HII regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing towards the ionizing sources, and cometary globules of dense gas, where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic HII region located at about 4 kpc, is an excellent target to perform this kind of studies. Using public molecular data extracted from the Galactic Ring Survey (13CO J=1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J=3-2, HCO+ and HCN J=4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment and the young stellar objects placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission towards its open border. We found that about 10' towards the southwest of G46 there are some pillar-like features, shining at 8 um and pointing towards the HII region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several young stellar objects likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and other one mostly composed by Class I type YSOs located just ahead the pillars-like features, strongly suggesting an age gradient in the YSOs distribution.Comment: Accepted for publication in The Astronomical Journal (April 14, 2015). Some figures were degraded to reduce file siz

    Interactions of the Infrared bubble N4 with the surroundings

    Full text link
    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with HII regions have been considered to be good samples of investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the HII region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a wide wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 ×1022\times10^{22} cm2^{-2}, mean volume density of about 4.4 ×104\times10^{4} cm3^{-3}, and a mean mass of 320 MM_{\odot}. In addition, from PAH emission seen at 8 μ\mum, free-free emission detected at 20 cm and a probability density function in special regions, we could identify clear signatures of the influence of the HII region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.Comment: Accepted by ApJ (16 pages, 11 figures, 9 tables

    The effects of external knowledge source heterogeneity on enterprise process and product innovation performance.

    No full text
    As a global manufacturing centre, China is transitioning from a 'Made in China' to 'Create in China' perspective. An ever-increasing number of companies are developing new competitive advantages and improving their innovation levels by acquiring external knowledge. Yet, studies rarely discuss the influence of various sources of knowledge on process and product innovation performance in China's manufacturing enterprises. Based on the Pavitt industry classification, we use a bivariate Probit model to investigate the influence of external knowledge sources on innovation performance, and test it by using Enterprise Survey data for China, published by the World Bank in 2013. Our empirical analysis indicates that external sources of knowledge, with the exception of suppliers, have a significantly positive influence on process and product innovation performance. Specifically, in the process of technological innovation, peers have a positive effect on enterprise process improvement, especially in the science-based sector. In product innovation, close technical cooperation with users accelerates the commercial manifestation of products, especially in the specialized supplier sector
    corecore