15 research outputs found

    Exploring spatial heterogeneity in accessibility and transit mode choice

    No full text
    Since accessibility is an important goal for sustainable transportation planning, this study analyzes the impact of accessibility on transit mode choice to investigate the potential reasons for the differences in the travel behavior of urban and suburban residents. To attain this purpose, two levels of spatial heterogeneity are considered. The first level is residential spatial heterogeneity, which represents the variations in the impacts of the factors between urban and suburban regions. The second level is the OD spatial heterogeneity, which represents whether the travel is between urban and suburban areas. Taking Xiamen city as a case study and considering the relationships between three OD characteristics (OD transit accessibility, OD travel distance, and OD spatial heterogeneity), this paper uses a joint analysis of the probit model and the structural equation model for multi-group samples. The results indicate that the low transit accessibility in suburban areas is related to lower public transportation use by suburban residents and less inter-regional bus travel by urban residents. The findings provide empirical support for the importance of suburban infrastructure development

    Supplementary dataset for the research article "Half-meter sea level fluctuations in the western tropical Pacific during the mid-Holocene"

    No full text
    <p>Table 1. U-Th aages of microatolls from Hainan Island, the northern South China Sea</p&gt

    Microwave Influence on Different M–O Bonds During MFI-Type Heteroatom (M) Zeolite Preparation

    No full text
    A facile and fast microwave-assisted approach without any other pre/post-treatment has been proposed to hydrothermally synthesize six kinds of MFI-type heteroatom (Mn, Ga, Ti, Sn, Cr, Zr) zeolites. By comparing with oven heating mode, it is found that microwave field displays a positive effect on the introduction of partial heteroatoms in the zeolite framework. Moreover, differing from the conventional heating, microwave irradiation displays different influences on the different heteroatom zeolites because different heteroatoms cause different polarities and wave-absorption abilities of M–O bonds under microwave irradiation. Furthermore, this positive effect of microwave is embodied not only on heteroatom zeolite synthesis and heteroatom state in zeolite framework but also the resultant catalytic performance. This finding provides an easy route for the synthesis of novel heteroatom zeolite being difficult to prepare by conventional mode, along with a new direction for the exploration of microwave effect

    Reversible Deacidification and Preventive Conservation of Paper-Based Cultural Relics by Mineralized Bacterial Cellulose

    No full text
    Paper-based cultural relics experience irreversible aging and deterioration during long-term preservation. The most common process of paper degradation is the acid-catalyzed hydrolysis of cellulose. Nowadays, deacidification has been considered as a practical way to protect acidified literature; however, two important criteria of minimal intervention and reversibility should be considered. Inspired by the superior properties of bacterial cellulose (BC) and its structural similarity to paper, herein, the mineralized BC membranes are applied to deacidification and conservation of paper-based materials for the first time. Based on the enzyme-induced mineralization process, the homogeneous and high-loaded calcifications of hydroxyapatite (HAP) and calcium carbonate (CaCO3) nanoparticles onto the nanofibers of BC networks have been achieved, respectively. The size, morphology, structure of minerals, as well as the alkalinity and alkali reserve of BC membranes are well controlled by regulating enzyme concentration and mineralization time. Compared with HAP/CaCO3-immersed method, HAP/CaCO3–BC membranes show more efficient and sustained deacidification performance on paper. The weak alkalinity of mineralized BC membranes avoids the negative effect of alkali on paper, and the high alkali reserve implies a good sustained-release effect of alkali to neutralize the future generated acid. The multiscale nanochannels of the BC membrane provide ion exchange and acid/alkali neutralization channels between paper and the BC membrane, and the final pH of protected paper can be well stabilized in a certain range. Most importantly, this BC-deacidified method is reversible since the BC membrane can be removed without causing any damage to paper and the original structure and fiber morphology of paper are well preserved. In addition, the mineralized BC membrane provides excellent flame-retardant performance on paper thanks to its unique organic–inorganic composite structure. All of these advantages of the mineralized BC membrane indicate its potential use as an effective protection material for the reversible deacidification and preventive conservation of paper-based cultural relics

    Reversible Deacidification and Preventive Conservation of Paper-Based Cultural Relics by Mineralized Bacterial Cellulose

    No full text
    Paper-based cultural relics experience irreversible aging and deterioration during long-term preservation. The most common process of paper degradation is the acid-catalyzed hydrolysis of cellulose. Nowadays, deacidification has been considered as a practical way to protect acidified literature; however, two important criteria of minimal intervention and reversibility should be considered. Inspired by the superior properties of bacterial cellulose (BC) and its structural similarity to paper, herein, the mineralized BC membranes are applied to deacidification and conservation of paper-based materials for the first time. Based on the enzyme-induced mineralization process, the homogeneous and high-loaded calcifications of hydroxyapatite (HAP) and calcium carbonate (CaCO3) nanoparticles onto the nanofibers of BC networks have been achieved, respectively. The size, morphology, structure of minerals, as well as the alkalinity and alkali reserve of BC membranes are well controlled by regulating enzyme concentration and mineralization time. Compared with HAP/CaCO3-immersed method, HAP/CaCO3–BC membranes show more efficient and sustained deacidification performance on paper. The weak alkalinity of mineralized BC membranes avoids the negative effect of alkali on paper, and the high alkali reserve implies a good sustained-release effect of alkali to neutralize the future generated acid. The multiscale nanochannels of the BC membrane provide ion exchange and acid/alkali neutralization channels between paper and the BC membrane, and the final pH of protected paper can be well stabilized in a certain range. Most importantly, this BC-deacidified method is reversible since the BC membrane can be removed without causing any damage to paper and the original structure and fiber morphology of paper are well preserved. In addition, the mineralized BC membrane provides excellent flame-retardant performance on paper thanks to its unique organic–inorganic composite structure. All of these advantages of the mineralized BC membrane indicate its potential use as an effective protection material for the reversible deacidification and preventive conservation of paper-based cultural relics

    Reversible Deacidification and Preventive Conservation of Paper-Based Cultural Relics by Mineralized Bacterial Cellulose

    No full text
    Paper-based cultural relics experience irreversible aging and deterioration during long-term preservation. The most common process of paper degradation is the acid-catalyzed hydrolysis of cellulose. Nowadays, deacidification has been considered as a practical way to protect acidified literature; however, two important criteria of minimal intervention and reversibility should be considered. Inspired by the superior properties of bacterial cellulose (BC) and its structural similarity to paper, herein, the mineralized BC membranes are applied to deacidification and conservation of paper-based materials for the first time. Based on the enzyme-induced mineralization process, the homogeneous and high-loaded calcifications of hydroxyapatite (HAP) and calcium carbonate (CaCO3) nanoparticles onto the nanofibers of BC networks have been achieved, respectively. The size, morphology, structure of minerals, as well as the alkalinity and alkali reserve of BC membranes are well controlled by regulating enzyme concentration and mineralization time. Compared with HAP/CaCO3-immersed method, HAP/CaCO3–BC membranes show more efficient and sustained deacidification performance on paper. The weak alkalinity of mineralized BC membranes avoids the negative effect of alkali on paper, and the high alkali reserve implies a good sustained-release effect of alkali to neutralize the future generated acid. The multiscale nanochannels of the BC membrane provide ion exchange and acid/alkali neutralization channels between paper and the BC membrane, and the final pH of protected paper can be well stabilized in a certain range. Most importantly, this BC-deacidified method is reversible since the BC membrane can be removed without causing any damage to paper and the original structure and fiber morphology of paper are well preserved. In addition, the mineralized BC membrane provides excellent flame-retardant performance on paper thanks to its unique organic–inorganic composite structure. All of these advantages of the mineralized BC membrane indicate its potential use as an effective protection material for the reversible deacidification and preventive conservation of paper-based cultural relics

    Reversible Deacidification and Preventive Conservation of Paper-Based Cultural Relics by Mineralized Bacterial Cellulose

    No full text
    Paper-based cultural relics experience irreversible aging and deterioration during long-term preservation. The most common process of paper degradation is the acid-catalyzed hydrolysis of cellulose. Nowadays, deacidification has been considered as a practical way to protect acidified literature; however, two important criteria of minimal intervention and reversibility should be considered. Inspired by the superior properties of bacterial cellulose (BC) and its structural similarity to paper, herein, the mineralized BC membranes are applied to deacidification and conservation of paper-based materials for the first time. Based on the enzyme-induced mineralization process, the homogeneous and high-loaded calcifications of hydroxyapatite (HAP) and calcium carbonate (CaCO3) nanoparticles onto the nanofibers of BC networks have been achieved, respectively. The size, morphology, structure of minerals, as well as the alkalinity and alkali reserve of BC membranes are well controlled by regulating enzyme concentration and mineralization time. Compared with HAP/CaCO3-immersed method, HAP/CaCO3–BC membranes show more efficient and sustained deacidification performance on paper. The weak alkalinity of mineralized BC membranes avoids the negative effect of alkali on paper, and the high alkali reserve implies a good sustained-release effect of alkali to neutralize the future generated acid. The multiscale nanochannels of the BC membrane provide ion exchange and acid/alkali neutralization channels between paper and the BC membrane, and the final pH of protected paper can be well stabilized in a certain range. Most importantly, this BC-deacidified method is reversible since the BC membrane can be removed without causing any damage to paper and the original structure and fiber morphology of paper are well preserved. In addition, the mineralized BC membrane provides excellent flame-retardant performance on paper thanks to its unique organic–inorganic composite structure. All of these advantages of the mineralized BC membrane indicate its potential use as an effective protection material for the reversible deacidification and preventive conservation of paper-based cultural relics

    Ordered, highly zeolitized mesoporous aluminosilicates produced by a gradient acidic assembly growth strategy in a mixed template system

    No full text
    Tremendous efforts have been made in recent years to synthesize ordered mesoporous zeolite materials, because of the accelerating demands of industrial bulky molecule conversion. Here, we develop a novel gradient acidic assembly growth strategy to prepare ordered highly zeolitized mesoporous aluminosilicate (SBA-16) materials in a mixed template system. This gradient acidic assembly growth strategy can achieve the high zeolitization of mesoporous aluminosilicate walls without any ordering loss of the mesostructure. The resultant highly zeolitized mesoporous materials, composed of the intergrown zeolite subcrystal particles (2-3 nm), exhibit high surface area (?834 m2 g-1) and pore volume (?0.64 cm3 g-1), typical channel of MFI framework (0.52 nm), and uniform mesopore (?5.75 nm), respectively. Moreover, these highly ordered crystallized mesostructures endow them with high exposed active sites and excellent hydrothermal stability, which consequently make their catalytic activities in bulky molecule transformations at least 10 times higher than conventional zeolites or amorphous mesoporous materials. Without the use of any special surfactants, this general synthetic process provides a brand new view for the synthesis and application of highly crystalline ordered mesoporous materials. 2016 American Chemical Society.This work was supported by the 973 Program (No. 2013CB934101), NSFC (Nos. U1463206, 21473037, 21433002, and 21573046), and National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia (No. 14-PET827-02), and Sinopec (No. X514005).Scopu

    Reversible Deacidification and Preventive Conservation of Paper-Based Cultural Relics by Mineralized Bacterial Cellulose

    No full text
    Paper-based cultural relics experience irreversible aging and deterioration during long-term preservation. The most common process of paper degradation is the acid-catalyzed hydrolysis of cellulose. Nowadays, deacidification has been considered as a practical way to protect acidified literature; however, two important criteria of minimal intervention and reversibility should be considered. Inspired by the superior properties of bacterial cellulose (BC) and its structural similarity to paper, herein, the mineralized BC membranes are applied to deacidification and conservation of paper-based materials for the first time. Based on the enzyme-induced mineralization process, the homogeneous and high-loaded calcifications of hydroxyapatite (HAP) and calcium carbonate (CaCO3) nanoparticles onto the nanofibers of BC networks have been achieved, respectively. The size, morphology, structure of minerals, as well as the alkalinity and alkali reserve of BC membranes are well controlled by regulating enzyme concentration and mineralization time. Compared with HAP/CaCO3-immersed method, HAP/CaCO3–BC membranes show more efficient and sustained deacidification performance on paper. The weak alkalinity of mineralized BC membranes avoids the negative effect of alkali on paper, and the high alkali reserve implies a good sustained-release effect of alkali to neutralize the future generated acid. The multiscale nanochannels of the BC membrane provide ion exchange and acid/alkali neutralization channels between paper and the BC membrane, and the final pH of protected paper can be well stabilized in a certain range. Most importantly, this BC-deacidified method is reversible since the BC membrane can be removed without causing any damage to paper and the original structure and fiber morphology of paper are well preserved. In addition, the mineralized BC membrane provides excellent flame-retardant performance on paper thanks to its unique organic–inorganic composite structure. All of these advantages of the mineralized BC membrane indicate its potential use as an effective protection material for the reversible deacidification and preventive conservation of paper-based cultural relics
    corecore