261 research outputs found

    SPIDER-WEB enables stable, repairable, and encryptible algorithms under arbitrary local biochemical constraints in DNA-based storage

    Full text link
    DNA has been considered as a promising medium for storing digital information. Despite the biochemical progress in DNA synthesis and sequencing, novel coding algorithms need to be constructed under the specific constraints in DNA-based storage. Many functional operations and storage carriers were introduced in recent years, bringing in various biochemical constraints including but not confined to long single-nucleotide repeats and abnormal GC content. Existing coding algorithms are not applicable or unstable due to more local biochemical constraints and their combinations. In this paper, we design a graph-based architecture, named SPIDER-WEB, to generate corresponding graph-based algorithms under arbitrary local biochemical constraints. These generated coding algorithms could be used to encode arbitrary digital data as DNA sequences directly or served as a benchmark for the follow-up construction of coding algorithms. To further consider recovery and security issues existing in the storage field, it also provides pluggable algorithmic patches based on the generated coding algorithms: path-based correcting and mapping shuffling. They provide approaches for probabilistic error correction and symmetric encryption respectively.Comment: 30 pages; 12 figures; 2 table

    A Model of Using the Asymmetric Polydopamine Thin Film for Mimicking Epithelial Folding In Vitro

    Get PDF
    The basement membrane (BM) is a biointeractive ultrathin network with distinct composition and organization of its epithelial and stromal sides, which render BMs with asymmetric biofunctions and mechanical properties. There are difficulties in the recapitulation of the highly hierarchical structure and function of BM. Here, the interfacial assembly method for the generation of BM mimics is applied. Dopamine is the starting material for the polymerization and assembly of polydopamine (PDA) into asymmetric materials. Compared to the PDA coating formed at the solid/liquid interface (≈20 nm), the PDA film formed at the air/liquid interface displays a thickness of ≈100 nm. Moreover, it possesses an asymmetric surface topography and an apparent Young's modulus of ≈1.0 MPa, which is structurally and mechanically similar to natural BMs. Of interest, the airside and the waterside of the PDA film exhibit differences in their adhesion affinity to the human skin keratinocytes. With stronger active mechanical processes between living cells and the waterside of PDA film, epithelial folding could be mimicked. Together, the PDA film is able to recapitulate the structural and mechanical complexity of natural BMs, indicating the prospective future of using PDA films for in vitro modeling cell-BM interaction and tissue formation

    Variational-based data assimilation to simulate sediment concentration in the Lower Yellow River, China

    Get PDF
    The heavy sediment load of the Yellow River makes it difficult to simulate sediment concentration using classic numerical models. In this paper, on the basis of the classic one-dimensional numerical model of open channel flow, a variational-based data assimilation method is introduced to improve the simulation accuracy of sediment concentration and to estimate parameters in sediment carrying capacity. In this method, a cost function is introduced first to determine the difference between the sediment concentration distributions and available field observations. A one-dimensional suspended sediment transport equation, assumed as a constraint, is integrated into the cost function. An adjoint equation of the data assimilation system is used to solve the minimum problem of the cost function. Field data observed from the Yellow River in 2013 are used to test the proposed method. When running the numerical model with the data assimilation method, errors between the calculations and the observations are analyzed. Results show that (1) the data assimilation system can improve the prediction accuracy of suspended sediment concentration; (2) the variational inverse data assimilation is an effective way to estimate the model parameters, which are poorly known in previous research; and (3) although the available observations are limited to two cross sections located in the central portion of the study reach, the variational-based data assimilation system has a positive effect on the simulated results in the portion of the model domain in which no observations are available

    Metallic surface states in a correlated d-electron topological Kondo insulator candidate FeSb2

    Full text link
    The resistance of a conventional insulator diverges as temperature approaches zero. The peculiar low temperature resistivity saturation in the 4f Kondo insulator (KI) SmB6 has spurred proposals of a correlation-driven topological Kondo insulator (TKI) with exotic ground states. However, the scarcity of model TKI material families leaves difficulties in disentangling key ingredients from irrelevant details. Here we use angle-resolved photoemission spectroscopy (ARPES) to study FeSb2, a correlated d-electron KI candidate that also exhibits a low temperature resistivity saturation. On the (010) surface, we find a rich assemblage of metallic states with two-dimensional dispersion. Measurements of the bulk band structure reveal band renormalization, a large temperature-dependent band shift, and flat spectral features along certain high symmetry directions, providing spectroscopic evidence for strong correlations. Our observations suggest that exotic insulating states resembling those in SmB6 and YbB12 may also exist in systems with d instead of f electrons

    Isolation, Identification and Determination of Six Nucleosides and Two Amino Acids from Bamboo Shoots of Gramineae Phyllostachys prominens (W Y Xiong)

    Get PDF
    Purpose: To develop a method to identify and quantify the compounds in the shoots of four Phyllostachys bamboo species (Gramineae Phyllostachys prominens W. Y. Xiong, Gramineae Phyllostachys iridescins C. Y. Yao Gramineae Phyllostachys pubescens (Carr.) Mitford, Gramineae Phyllostachys praecox C. D. Chu et C. S. Chao. ).Methods: The compounds in bamboo shoots were isolated and identified by ultraviolet (UV) spectroscopy, mass spectrometry (MS), and nuclear magnetic resonance (NMR). Quantitative analysis was performed by reversed-phase high performance liquid chromatography (RP-HPLC) using a C18 column and a mixture (1:1ratio) of acetonitrile and 15 mM ammonium acetate (pH 6.0) as mobile phase. This method was validated for its reproducibility, chemical stability, and recovery.Results: Six nucleosides and two amino acids were isolated from bamboo shoots, including guanosine, 2’-deoxyguanosine, adenosine, thymidine, uridine, cytidine, tryptophan, and phenylalanine. The HPLC method was rapid and reproducible. The intraday and interday concentrations of the eight identified compounds showed good linearity in the range of 0.22 - 60.00 ÎŒg/mL. The relative standard deviation (RSD) for intraday and interday precision for reproducibility and stability was < 3 %. The validated method was successfully applied to determine the content of the eight compounds in four different Phyllostachys species.Conclusion: Adenosine was isolated from bamboo shoots previously, but the isolation of the other seven compounds are reported here for the first time. The method proposed is sensitive and reproducible, and would facilitate studies of nutritional/medicinal compounds in bamboo shoot.Keywords: Bamboo shoots, Phyllostachys prominens, Guanosine, 2’ Deoxyguanosine, Adenosine, Thymidine, Uridine, Cytidine, Tryptophan, Phenylalanin

    Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells

    Get PDF
    Twist and fracture of surface lattice tend to occur under harsh condition due to the soft lattice natures of hybrid perovskite materials. Accordingly, surface defects and lattice distortion are produced, which allow the performance loss and notorious degradation in perovskite solar cells (PSCs). In our work, judiciously selected conjugated ligand was employed as the film intermediary, from which rigid and delocalization 4-phenylpyridine (4-pPy) exhibited the most significant improvement on both optoelectrical performance and stability of PSCs. By regulating the film crystallization kinetics, high-quality perovskite films can be obtained with preferable crystal orientation. Moreover, benefiting from the defects passivation and unidirectional bonding effect, coordinated 4-pPy “scaffold” on the lattice surface could mitigate vacancy formation and lattice twist/fracture under severe conditions. The resulted p-i-n planar device shows a considerable PCE of 21.12% (certified 20.2%) with negligible hysteresis, as well as an excellent storage (90% of original PCE after 1000 h at 60% RH), operating (90% of original PCE after 600 h at maximum power point) and thermal stress (89% of original PCE after 500 h at 85 °C) stability. It is hoped that our findings could open a new way to accelerate continued progress on PSCs regimes for efficieny maximization and stability prolongation

    Influence of disorder on the in-field Jc of MgB2 wires using highly active pyrene

    Get PDF
    In this work, we report on significantly enhanced critical current density (Jc) in MgB2 superconductor that was easily obtained by doping with a hydrocarbon, highly active pyrene (C16H10), and using a sintering temperature as low as ∌ 600 °C. The processing advantages of the C16H10 additive include production of a highly active carbon (C) source, an increased level of disorder, and the introduction of small grain size, resulting in enhancement of Jc
    • 

    corecore