2,144 research outputs found

    Can the sex ratio of the spiralling whitefly (Aleurodicus dispersus) be described by local mate competition?

    Get PDF
    ABSTRACT Background: Local mate competition theory predicts a female-biased sex ratio if one or a few hymenopteran foundresses, such as parasitoid wasps, oviposit in a local patch, and a less female-biased sex ratio as the number of foundresses increases. Although hemipterans, whiteflies are also haplodiploid insects, and the spatial structure of whitefly populations is similar to that of wasps. Question: Do whitefly sex ratios match the theoretical predictions of local mate competition? Organism: The spiralling whitefly, Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae), a newly invasive, destructive pest on Hainan Island, China. Methods: We investigated the effects of the number of foundresses on the sex ratio of A. dispersus. Results: Offspring sex ratio was female-biased when only one foundress oviposited in a patch. Sex ratio increased with the number of foundresses. When only one foundress laid eggs in a patch, offspring sex ratio declined as the number of offspring increased. Male offspring emerged earlier than female offspring. Conclusion: Local mate competition predicted the trends in sex ratio of the spiralling whitefly

    Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration

    Get PDF
    The thromboxane A2 receptor (TP) has been implicated in restenosis after vascular injury, which induces vascular smooth muscle cell (VSMC) migration and proliferation. However, the mechanism for this process is largely unknown. In this study, we report that TP signaling induces VSMC migration and proliferation through activating YAP/TAZ, two major downstream effectors of the Hippo signaling pathway. The TP-specific agonists [1S-[1Ξ±,2Ξ±(Z),3Ξ²(1E,3S*),4 Ξ±]]-7-[3-[3-hydroxy-4-(4-iodophenoxy)-1-butenyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (I-BOP) and 9,11-dideoxy-9Ξ±,11Ξ±-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U-46619) induce YAP/TAZ activation in multiple cell lines, including VSMCs. YAP/TAZ activation induced by I-BOP is blocked by knockout of the receptor TP or knockdown of the downstream G proteins GΞ±12/13. Moreover, Rho inhibition or actin cytoskeleton disruption prevents I-BOP-induced YAP/TAZ activation. Importantly, TP activation promotes DNA synthesis and cell migration in VSMCs in a manner dependent on YAP/TAZ. Taken together, thromboxane A2 signaling activates YAP/TAZ to promote VSMC migration and proliferation, indicating YAP/TAZ as potential therapeutic targets for cardiovascular diseases

    Predictors of Remission of Early-Onset Poststroke Depression and the Interaction Between Depression and Cognition During Follow-Up

    Get PDF
    Objectives: This study aimed to examine the rate of remission in individuals experiencing early-onset poststroke depression (PSD) in China and to identify predictors of remission during a 3-month follow-up. This study also explored the interaction between cognitive impairment and depression.Methods: A total of 820 patients with PSD from a massive multicenter prospective cohort project in China (PRIOD) were included in the present study. Depressive symptoms were measured with the Hamilton Depression Rating Scale (17 Items, HDRS-17) at 2 weeks and the endpoint of the 3-month follow-up. The cut-off score of HDRS-17 (< 8) was used to define remission of depression at the endpoint. The Mini-Mental State Exam (MMSE) was used to evaluate the cognitive impairment of the patients (at the 2-week follow-up and 3-month endpoint). The National Institutes of Health Stroke Scale (NIHSS) was used to measure the severity of stroke.Results: (1) Six hundred and forty-two patients completed the 3-month follow-up, and 332 (51.7%) patients remitted by the end of the study. Univariate analyses indicated that there was a higher proportion of patients who had hypertension, frontal lobe lesion, basal ganglia lesion, poor outcome at 2 weeks, high scores on the NIHSS at 2 weeks, major life events within 3 months, and major medical diseases within 3 months in the nonremission group. In stepwise multiple logistic regression analyses, remission was significantly predicted by lower NIHSS scores at 2 weeks (p = 0.001, OR = 1.086, 95% CI 1.035–1.139), fewer major life events (p = 0.036, OR = 5.195, 95% CI 1.111–27.283), fewer major medical comorbidities (p = 0.015, OR = 2.434, 95% CI 1.190–4.979), and fewer frontal lobe lesions (p = 0.042, OR = 1.717, 95% CI 1.019–2.891). (2) After controlling for confounding variables, repeated measures analysis of variance revealed a significant interaction between time (2 weeks vs. 3 months) and group (remitters vs. nonremitters) on MMSE scores [F(1, 532) = 20.2, p < 0.001].Conclusions: Early-onset PSD patients with milder neurological impairment, fewer major life events, fewer major medical comorbidities and no frontal lobe lesion at baseline were more likely to achieve remission 3 months after stroke. Only remitters of PSD improved significantly in cognitive impairment after stroke.The PRIOD trial is registered at http://www.isrctn.com/, number ISRCTN62169508

    Major challenges and recent advances in characterizing biomass thermochemical reactions

    Get PDF
    \ua9 2023Thermochemical conversions are pathways for biomass utilization to produce various value-added energy and chemical products. For the development of novel thermochemical conversion technologies, an accurate understanding of the reaction performance and kinetics is essential. Given the diversity of the thermal analysis techniques, it is necessary to understand the features and limitations of the reactors, ensuring that the selected thermal analysis reactor meets the specific need for reaction characterization. This paper provides a critical overview of the thermal analysis reactors based on the following perspectives: 1) gas flow conditions in the reactor, 2) particle\u27s external and internal heat and mass transfer limitations, 3) heating rate, 4) temperature distribution, 5) nascent char production and reaction, 6) liquid feeding and atomization, 7) simultaneous sampling and analyzing of bed materials, and 8) reacting atmosphere change. Finally, prospects and future research directions in the development of analysis techniques are proposed

    Mitogenic and Oncogenic Stimulation of K433 Acetylation Promotes PKM2 Protein Kinase Activity and Nuclear Localization

    Get PDF
    Alternative splicing of the PKM2 gene produces two isoforms, M1 and M2, which are preferentially expressed in adult and embryonic tissues, respectively. The M2 isoform is reexpressed in human cancer and has nonmetabolic functions in the nucleus as a protein kinase. Here, we report that PKM2 is acetylated by p300 acetyltransferase at K433, which is unique to PKM2 and directly contacts its allosteric activator, fructose 1,6-bisphosphate (FBP). Acetylation prevents PKM2 activation by interfering with FBP binding and promotes the nuclear accumulation and protein kinase activity of PKM2. Acetylationmimetic PKM2(K433) mutant promotes cell proliferation and tumorigenesis. K433 acetylation is decreased by serum starvation and cell-cell contact, increased by cell cycle stimulation, epidermal growth factor (EGF), and oncoprotein E7, and enriched in breast cancers. Hence, K433 acetylation links cell proliferation and transformation to the switch of PKM2 from a cytoplasmic metabolite kinase to a nuclear protein kinase

    Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress

    Get PDF
    Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re-expression of wild-type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2-dependent manner. The SIRT2-mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress

    Molecular Approaches to Identify Cryptic Species and Polymorphic Species within a Complex Community of Fig Wasps

    Get PDF
    Cryptic and polymorphic species can complicate traditional taxonomic research and both of these concerns are common in fig wasp communities. Species identification is very difficult, despite great effort and the ecological importance of fig wasps. Herein, we try to identify all chalcidoid wasp species hosted by one species of fig, using both morphological and molecular methods. We compare the efficiency of four different DNA regions and find that ITS2 is highly effective for species identification, while mitochondrial COI and Cytb regions appear less reliable, possibly due to the interference signals from either nuclear copies of mtDNA, i.e. NUMTs, or the effects of Wolbachia infections. The analyses suggest that combining multiple markers is the best choice for inferring species identifications as any one marker may be unsuitable in a given case
    • …
    corecore