1,917 research outputs found
A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution
We discuss excess noise contributions of a practical balanced homodyne
detector in Gaussian-modulated coherent-state (GMCS) quantum key distribution
(QKD). We point out the key generated from the original realistic model of GMCS
QKD may not be secure. In our refined realistic model, we take into account
excess noise due to the finite bandwidth of the homodyne detector and the
fluctuation of the local oscillator. A high speed balanced homodyne detector
suitable for GMCS QKD in the telecommunication wavelength region is built and
experimentally tested. The 3dB bandwidth of the balanced homodyne detector is
found to be 104MHz and its electronic noise level is 13dB below the shot noise
at a local oscillator level of 8.5*10^8 photon per pulse. The secure key rate
of a GMCS QKD experiment with this homodyne detector is expected to reach
Mbits/s over a few kilometers.Comment: 22 pages, 11 figure
Structural and functional alterations of the tracheobronchial tree after left upper pulmonary lobectomy for lung cancer
© 2019 The Author(s). Background: Pulmonary lobectomy has been a well-established curative treatment method for localized lung cancer. After left upper pulmonary lobectomy, the upward displacement of remaining lower lobe causes the distortion or kink of bronchus, which is associated with intractable cough and breathless. However, the quantitative study on structural and functional alterations of the tracheobronchial tree after lobectomy has not been reported. We sought to investigate these alterations using CT imaging analysis and computational fluid dynamics (CFD) method. Methods: Both preoperative and postoperative CT images of 18 patients who underwent left upper pulmonary lobectomy are collected. After the tracheobronchial tree models are extracted, the angles between trachea and bronchi, the surface area and volume of the tree, and the cross-sectional area of left lower lobar bronchus are investigated. CFD method is further used to describe the airflow characteristics by the wall pressure, airflow velocity, lobar flow rate, etc. Results: It is found that the angle between the trachea and the right main bronchus increases after operation, but the angle with the left main bronchus decreases. No significant alteration is observed for the surface area or volume of the tree between pre-operation and post-operation. After left upper pulmonary lobectomy, the cross-sectional area of left lower lobar bronchus is reduced for most of the patients (15/18) by 15-75%, especially for 4 patients by more than 50%. The wall pressure, airflow velocity and pressure drop significantly increase after the operation. The flow rate to the right lung increases significantly by 2-30% (but there is no significant difference between each lobe), and the flow rate to the left lung drops accordingly. Many vortices are found in various places with severe distortions. Conclusions: The favorable and unfavorable adaptive alterations of tracheobronchial tree will occur after left upper pulmonary lobectomy, and these alterations can be clarified through CT imaging and CFD analysis. The severe distortions at left lower lobar bronchus might exacerbate postoperative shortness of breath
Variant biomarker discovery using mass spectrometry-based proteogenomics
Genomic diversity plays critical roles in risk of disease pathogenesis and diagnosis. While genomic variants—including single nucleotide variants, frameshift variants, and mis-splicing isoforms—are commonly detected at the DNA or RNA level, their translated variant protein or polypeptide products are ultimately the functional units of the associated disease. These products are often released in biofluids and could be leveraged for clinical diagnosis and patient stratification. Recent emergence of integrated analysis of genomics with mass spectrometry-based proteomics for biomarker discovery, also known as proteogenomics, have significantly advanced the understanding disease risk variants, precise medicine, and biomarker discovery. In this review, we discuss variant proteins in the context of cancers and neurodegenerative diseases, outline current and emerging proteogenomic approaches for biomarker discovery, and provide a comprehensive proteogenomic strategy for detection of putative biomarker candidates in human biospecimens. This strategy can be implemented for proteogenomic studies in any field of enquiry. Our review timely addresses the need of biomarkers for aging related diseases
A directionally tunable but frequency-invariant beamformer on an acoustic velocity-sensor triad to enhance speech perception
Herein investigated are computationally simple microphone-array beamformers that are independent of the frequency-spectra of all signals, all interference, and all noises. These beamformers allow the listener to tune the desired azimuth-elevation “look direction.” No prior information is needed of the interference. These beamformers deploy a physically compact triad of three collocated but orthogonally oriented velocity sensors. These proposed schemes’ efficacy is verified by a jury test, using simulated data constructed with Mandarin Chinese (a.k.a. Putonghua) speech samples. For example, a desired speech signal, originally at a very adverse signal-to-interference-and-noise power ratio (SINR) of -30 dB, may be processed to become fully intelligible to the jury
Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jin-Ping Laboratory
We report results on the searches of weakly interacting massive particles
(WIMPs) with sub-GeV masses () via WIMP-nucleus spin-independent
scattering with Migdal effect incorporated. Analysis on time-integrated (TI)
and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1
kgday exposure and 160 eVee threshold for TI analysis, and 1107.5
kgday exposure and 250 eVee threshold for AM analysis. The sensitive
windows in are expanded by an order of magnitude to lower DM masses
with Migdal effect incorporated. New limits on at
90\% confidence level are derived as 1010
for TI analysis at 50180 MeV/, and
1010 for AM analysis at
75 MeV/3.0 GeV/.Comment: 5 pages, 4 figure
The N-Myc-responsive lncRNA MILIP promotes DNA double-strand break repair through non-homologous end joining
The protooncoprotein N-Myc, which is overexpressed in approximately 25% of neuroblastomas as the consequence of MYCN gene amplification, has long been postulated to regulate DNA double-strand break (DSB) repair in neuroblastoma cells, but experimental evidence of this function is presently scant. Here, we show that N-Myc transcriptionally activates the long noncoding RNA MILIP to promote nonhomologous end-joining (NHEJ) DNA repair through facilitating Ku70–Ku80 heterodimerization in neuroblastoma cells. High MILIP expression was associated with poor outcome and appeared as an independent prognostic factor in neuroblastoma patients. Knockdown of MILIP reduced neuroblastoma cell viability through the induction of apoptosis and inhibition of proliferation, retarded neuroblastoma xenograft growth, and sensitized neuroblastoma cells to DNA-damaging therapeutics. The effect of MILIP knockdown was associated with the accumulation of DNA DSBs in neuroblastoma cells largely due to decreased activity of the NHEJ DNA repair pathway. Mechanistical investigations revealed that binding of MILIP to Ku70 and Ku80 increased their heterodimerization, and this was required for MILIP-mediated promotion of NHEJ DNA repair. Disrupting the interaction between MILIP and Ku70 or Ku80 increased DNA DSBs and reduced cell viability with therapeutic potential revealed where targeting MILIP using Gapmers cooperated with the DNA-damaging drug cisplatin to inhibit neuroblastoma growth in vivo. Collectively, our findings identify MILIP as an N-Myc downstream effector critical for activation of the NHEJ DNA repair pathway in neuroblastoma cells, with practical implications of MILIP targeting, alone and in combination with DNA-damaging therapeutics, for neuroblastoma treatment
Detection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic
traits, including disease states, are usually found in non-coding genomic
regions. These genetic variants are often also associated to differences in
expression levels of nearby genes (they are "expression quantitative trait
loci" or eQTLs for short) and presumably play a gene regulatory role, affecting
the status of molecular networks of interacting genes, proteins and
metabolites. Computational systems biology approaches to reconstruct causal
gene networks from large-scale omics data have therefore become essential to
understand the structure of networks controlled by eQTLs together with other
regulatory genes, and to generate detailed hypotheses about the molecular
mechanisms that lead from genotype to phenotype. Here we review the main
analytical methods and softwares to identify eQTLs and their associated genes,
to reconstruct co-expression networks and modules, to reconstruct causal
Bayesian gene and module networks, and to validate predicted networks in
silico.Comment: minor revision with typos corrected; review article; 24 pages, 2
figure
- …