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Genomic diversity plays critical roles in risk of disease pathogenesis and diagnosis.
While genomic variants—including single nucleotide variants, frameshift variants,
andmis-splicing isoforms—are commonly detected at the DNA or RNA level, their
translated variant protein or polypeptide products are ultimately the functional
units of the associated disease. These products are often released in biofluids and
could be leveraged for clinical diagnosis and patient stratification. Recent
emergence of integrated analysis of genomics with mass spectrometry-based
proteomics for biomarker discovery, also known as proteogenomics, have
significantly advanced the understanding disease risk variants, precise
medicine, and biomarker discovery. In this review, we discuss variant proteins
in the context of cancers and neurodegenerative diseases, outline current and
emerging proteogenomic approaches for biomarker discovery, and provide a
comprehensive proteogenomic strategy for detection of putative biomarker
candidates in human biospecimens. This strategy can be implemented for
proteogenomic studies in any field of enquiry. Our review timely addresses the
need of biomarkers for aging related diseases.
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1 Application of proteogenomics in biomarker
discovery

A biomarker is defined as a biological characteristic that indicates clinically relevant
endpoints and outcomes for disease diagnosis, stratification, and/or prognosis (Aronson and
Ferner, 2017). To date, biomarkers have been primarily used for early-stage diagnosis, when
therapeutic interventions are most effective. Beyond diagnostic applications, biomarkers can
also serve as drug targets and proxies of response to treatment. The use of genetic loci as
predictive biomarkers has seen a significant advance in recent years, in part due to their high
reproducibly and cost-effectiveness which has come with next-generation sequencing (NGS)
technology (Schwarze et al., 2018). Disease-based genetics often identifies risk variants
associated with diseases, but alone does not provide information on expression at the
transcript or protein level. Transcriptome variant markers–such as point mutations, fusion
products, and splicing–provide relatively high specificity and sensitivity (Fehse et al., 2000;
Janik et al., 2021; Monti et al., 2022). Moreover, while transcriptomics has been widely
applied to tissue samples, its application to biofluids is more challenging due to the low
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quality, quantity, and specificity of RNAs that are recovered from
biofluids. The detection of de novo protein biomarkers via antibody
and mass spectrometry (MS)-based strategies represents a
promising solution (Borrebaeck and Wingren, 2009; Zhou et al.,
2017). Although immunoassay-based approaches can analyze
several proteins at once, they are limited by the availability of
suitable antibodies, while MS is generally “hypothesis-free” and
high throughput.

Historically, the fields of genomics and proteomics have evolved
independently. “Proteogenomics”was first referred to as the application
of MS-based proteomics to complement existing genome annotations
(Jaffe et al., 2004). The applications have since become much broader,
now encompassing post-translational modifications (PTMs) and
integrative modeling of multi-omics data with the advent of robust
computational tools (Ruggles et al., 2017). Early proteogenomic
applications consisted of evaluating parental proteins and their
product peptides to identify and validate informatically predicted
open reading frames (ORFs), detect de novo variants, and reveal
PTMs. Now, bioinformatics pipelines allow researchers to combine
both genomic and proteomic data in their analyses, making so-called
“integrated proteogenomics analyses,” more approachable (Ang et al.,
2019).

In traditional database search strategies for discovery proteomics,
experimental protein identification is predicated on the alignment of
experimental mass spectra with reference proteome databases, such as
the universal Protein Resource (UniProt) and NCBI Reference
Sequence Database (Refseq) (Consortium, 2015; O’Leary et al.,
2016). With this approach, protein findings are limited to existing
sequences within such databases (Jimmy et al., 1994; Xuemei Han
et al., 2008). To identify novel sequences and ORFs, these annotation

databases were subsequently expanded with the inclusion of peptide
sequences derived from genetically predicted coding regions.
However, a number of additional factors, such as translation
efficiency and post-transcriptional regulation, complicate the ability
to accurately predict biologically relevant peptide products from
transcriptional data alone (Schwanhäusser et al., 2011; Vogel and
Marcotte, 2012). Additionally, events contributing to the multiplicity
of proteoforms, including alternative splicing and PTMs, can be
challenging–and at times impossible–to detect at the RNA level
(Smith and Kelleher, 2013; Jian et al., 2014). One possible solution
is to couple NGS with ultra-high-resolution MS to identify de novo
peptides that may serve as promising biomarker candidates (Abecasis,
2010; Ning and Nesvizhskii, 2010; Gargis et al., 2012; Wang et al.,
2012; Kamalakaran et al., 2013; Sheynkman et al., 2013; Chrystoja and
Diamandis, 2014; Zhang et al., 2019). Disease-specific genomic
variants can be identified from high-quality sequencing of disease-
relevant tissue samples and used to build customized libraries for
peptide biomarker identification via discovery proteomics (Figure 1).
Recent success in both integrated proteogenomic analyses as well as
variant protein detection is driving biomarker discovery and patient
stratification in recent years.

2 Proteogenomics driving biomarker
studies

2.1 Cancers

Strategies combining genomics and proteomics in the
identification of cancer protein biomarkers have perhaps best

FIGURE 1
Application of proteogenomics in biomarker discovery. Whole-exome sequencing (WES), whole genome sequencing (WGS), and total RNA
sequencing of control and patient-derived samples are used to identify canonical, or de novo reads matching to single nucleotide variants (SNVs), short
insertions/deletions (indels), mis-splicing, or fusion transcripts. The variant coordinates are integrated within the normal protein sequence to build a
custom peptide library. In parallel, discovery proteomics of biofluid samples can be used to build a proteomics database, which can be mined for
sequences of interest using the custom-built peptide library. The candidate biomarkers are further validated in large-cohort studies.
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demonstrated the utility of proteogenomics for biomarker discovery.
The Cancer Genome Atlas program (TCGA) represents a rich
resource for large-scale genomic data. TCGA comprises more
than 30 cancer subtypes and provides data from both cancer and
control tissue (Cancer, 2006; Tomczak et al., 2015). By integrating
proteomics, the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) has sought to expand on this dataset, performing
proteomic and PTM analysis on TCGA specimens. This effort
has produced robust, multidimensional proteomic datasets of
cancer tissue subtypes for groups seeking to conduct integrated
proteogenomic analyses (Proteomics Cancer, 2007; Ellis et al.,
2013a). Several studies have successfully demonstrated the utility
of these datasets in uncovering candidate biomarkers (Rodriguez
et al., 2021). For example, Chiou and colleagues successfully used

these data to identify S100A9 and GRN as combinatorial biomarkers
for early identification of hepatocellular carcinoma (HCC) from
urine (Chiou and Lee, 2016). Moreoever, Gillete and colleagues
leveraged the CPTAC database to perform proteogenomic
characterization of lung adenocarcinoma (LUAD) and normal,
adjacent tissue (Gillette et al., 2020). This analysis utilized not
only proteomic and PTM data, but also whole-exome sequencing
(WES), RNA-sequencing (RNAseq), and DNA methylation
analysis, to identify mRNA and peptides derived from somatic
mutations as biomarker candidates of LUAD driven by ALK-
fusion where fusion proteins EML4-ALK with and HMBOX1-
ALK were formed at transcriptome level (Table 1).

Tumor-specific somatic mutations are ideal targets for
biomarker development. For example, targeted MS-based

TABLE 1 Integrated proteogenomic analyses lead to cancer biomarker discovery.

Disease Specimen Brief summary Ref

Cancer (Breast) Patient tissue Proteogenomics expression profiles used to determine drug resistance in breast cancer
subtypes and understand drivers of oncogenic pathways

Lawrence et al. (2015)

Cancer (HCC) Patient urine Identification of HCC diagnostic biomarkers, proposing S100A9 and GRN as potential
combinatorial biomarkers

Huang et al. (2015)

Cancer (Neuroblastoma,
Colorectal)

Cultured cells Mutant proteins released by extracellular vesicle subtypes elucidate the role of EVs in
cancer progression and identify possible diagnostic biomarkers in easily-accessible
biofluids

Keerthikumar et al.
(2015)

Cancer (Breast) Patient tissue (TCGA) Proteomic and phospho-proteomic data combined with TCGA transcriptomic data to
classify breast cancer subtypes and identify candidate drug targets

Mertins et al. (2016)

Healthy B-cells Cultured Cells Proteogenomic identification and analysis of MHC-I associated peptides (MAPs) from
previously unidentified reading frames, revealing the potential for non-coding or “cryptic”
MAPs as a source of tumor-specific antigens

Laumont et al. (2016)

Cancer (Prostate) Patient tissue Proteogenomic profiling, demonstrating the utility of mutliomics in the generation of
novel prostate cancer subtypes; supports the adoption and expansion of research
developing multimodal markers

Sinha et al. (2019)

Cancer (Breast) Patient tissue (Oslo2,
TCGA)

Study achieving both the recapitulation of the established PAM50 breast cancer subtypes,
as well as further stratification-based proteogenomic profiles

Johansson et al.
(2019)

Cancer (Endometrial) Patient tissue (CPTAC) A proteogenomic analysis with the notable inclusion of circRNA, acetylation contributes
unique insights into the development of endometrial carcinoma and the consequences of
specific mutational profiles and proposes novel endometrial carcinoma subtypes

Dou et al. (2020)

Cancer (Lung) Patient tissue (CPTAC) CPTAC study that identifies a number wild-type proteins and ALK-fusion products as
potential biomarkers in LUAD and proposes a number of PTMs holding potential
diagnostic value

Gillette et al. (2020)

Cancer (Lung) Patient tissue Study identifying demographic risk factors for early-onset LUAD, possible biomarkers for
patient stratification, and druggable targets in early-stage LUAD.

Chen et al. (2020)

Cancer (Glial) Patient tissue (SMC) Study proposing classifications of previously-thought-to-be glioblastoma subtype, holding
both prognostic value and the potential to inform personalized treatment

Oh et al. (2020)

Cancer (Brain) Patient tissue Study in which proteogenomic analysis integrating a number of pediatric brain tumor
subtypes reveal common therapeutic vulnerabilities across subtypes

Petralia et al. (2020)

Cancer (Glial) Patient tissue Proteogenomic analysis revealing patient subtypes based on immune profiles,
demonstrating a multidimensional strategy applicable for both further mechanistic
investigation and patient stratification

Wang et al. (2021)

Cancer (Lung) Patient tissue (CPTAC) CPTAC study clustering analysis revealed both tumor subtypes and specific therapeutic
vulnerabilities

Satpathy et al. (2021)

Cancer (Pancreatic) Patient tissue (CPTAC) Proteogenomic approach yielding a rich subset of biomarkers with potential for detection,
diagnosis, and treatment

Cao et al. (2021)

Cancer (Breast) Patient tissue (CPTAC) Proteogenomic analyses unveiled 19q13.31–33 deletion as a marker associated with
chemotherapy resistance

Anurag et al. (2022)
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detection of mutant KRASp.G12V and KRASp.G12D proteins has
proven to be a viable biomarker strategy in colorectal and
pancreatic cancers (Wang et al., 2011). In addition to oncogenic
mutations, tumors have also been found to contain up to
100 “passenger” mutations, many of which are translated into
potentially targetable proteins (Reddy et al., 1982; Wood Laura
et al., 2007; Stratton et al., 2009; Bignell et al., 2010; Bozic et al.,
2010). Although many disease-associated mutations have been
identified over the years, including KRAS (Demory Beckler et al.,
2013), P53 (Duffy et al., 2018), and EGFR (Awasthi et al., 2018), the
vast heterogeneity of mutation sites not only poses a challenge to
forming effective therapies, but also makes the possibility of creating
antibodies for eachmutation impractical (Leonardi et al., 2012). MS-
based proteogenomics is often employed to discover mutant and
novel peptides that occur downstream of tumor-specific mutations
and hold promise as future biomarker candidates.

2.2 Neurodegenerative diseases

Similar to cancer, there is an increasing role for biomarkers
of disease characterization and patient stratification in the field
of neurodegeneration (DeKosky and Marek, 2003). Despite the
fact that there has been limited success in identifying true
plasma or cerebrospinal fluid (CSF) biomarkers of
neurodegenerative disease thus far (Carlyle et al., 2018),
there has been recent, promising progress in this field,
assisted by proteogenomic strategies.

2.2.1 Alzheimer’s disease
Using an integrative proteogenomic pipeline, Li and colleagues

successfully identified 496 novel peptides in AD postmortem brain
tissue. These identified peptides represent translational products of
mutations and mis-splicing events that occur in AD and could serve
as putative protein biomarkers (Li et al., 2016a). Applying a
proteogenomic approach that was specifically designed to dissect
alternative splicing events, Johnson et al. identified modules
associated with AD cognitive decline using co-expression
network analyses of postmortem brain samples. From these
modules, the investigators then identified a number of
differentially expressed, novel alternative splice variant proteins
(Johnson et al., 2018).

Validation of biomarker candidates through large-scale studies
of human samples is an essential component of developing
clinical-grade biomarkers. To that end, high-throughput
targeted MS-based approaches are often employed to validate
findings discovered through companion shotgun proteomics
approaches. For example, a targeted proteomics assay was
recently used to identify APOE4-specific peptides in the plasma
of AD patients (Simon et al., 2012). Expanding on the
conventional identification of tau protein for clinical diagnosis
of AD, multiple phospho-tau proteins were quantified using
targeted proteomics of postmortem brain and CSF from AD
patients (Barthelemy et al., 2019). Similarly, exon-specific 4R
tau isoform-derived tryptic peptides were successfully
quantified by targeted MS in the CSF of patients with Lewy
body dementia (Barthelemy et al., 2016).

2.2.2 Frontotemporal dementia and amyotrophic
lateral sclerosis (FTD/ALS)

During the past two decades, several pathological mechanisms
of FTD and ALS involving TDP-43, Tau, and SOD1 have been
extensively described (Hedl et al., 2019). Mutations inC9orf72, TDP-
43, FUS, and VCP have been found to be closely associated with
FTD/ALS and represent promising biomarker candidates; however,
there is still an absence of protein biomarkers for early disease
detection. (Abramzon et al., 2020). Recently, an ultra-sensitive MS
assay was used to successfully quantify C9ORF72 isoform levels in
human brain tissue, demonstrating a significant decrease of the
C9ORF72 long isoform in the brains of C9ORF72 mutation carriers
(Viode et al., 2018). Additionally, TDP-43 pathology-related cryptic
exon RNAs translated protein product have been observed in
induced pluripotent stem cells derived neurons with TDP-43
deficiency as well as in CSF from FTD-ALS patients; this may
represent a viable target for peptide-based biomarker
development (Ling et al., 2015; Seddighi, 2023).

2.2.3 Huntington’s disease
Huntington’s Disease (HD) is caused by a CAG repeat

expansion, leading to accumulation and impaired clearance of
mutant huntingtin protein. HD is currently diagnosed on the
basis of a direct genetic test for CAG repeats, and performance
on cognitive tests is the primary metric for disease progression
(Yamamoto et al., 2000; Killoran et al., 2022). The need for an
objective and sensitive biomarker for HD prognosis led to the
identification of mutant huntingtin protein in CSF via an
immunoprecipitation and flow-cytometry based assay (Southwell
et al., 2015). A biomarker panel combining mutant and native
proteins could aid in earlier diagnosis of the disease. Recent
investigations have not only identified mutant huntingtin
proteins in the mouse cortex using targeted MS approaches (Sap
et al., 2021), but also demonstrated that combining mutant
huntingtin protein and native markers (e.g., neurofilament light)
can enable earlier HD detection and effective monitoring of disease
progression and response to treatment (Rodrigues et al., 2020).

3 Translational value of proteogenomic
biomarker strategies

3.1 Diagnosis and prognosis

To date, the most common application of biomarkers has been
in the context of disease diagnosis. Monitoring the levels of native
proteins has paved the way for accurate detection of breast cancer
(Gam, 2012), colon cancer (Kuppusamy et al., 2017), pancreatic
cancer (Duffy et al., 2010), and neurodegenerative diseases
(Heywood et al., 2015). However, there is an emerging role for
the implementation of mutant protein biomarkers in disease
detection. Following the established role of BRAF mutations in
cutaneous melanoma, which often results in the substitution of
glutamic acid for valine at position 600 (BRAFV600E), this genetic
signature and its protein products have garnered much attention as
both a diagnostic and prognostic biomarker for melanoma (Capper
et al., 2011; Ghossein et al., 2013; Long et al., 2013).
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Biomarker panels have demonstrated utility in detecting disease
with both specificity and sensitivity. In 2017, Cohen and colleagues
presented a proteogenomic screening test for the detection of
pancreatic ductal adenocarcinoma using a joint panel of four
conventional protein biomarkers for cancer, combined with the
presence of mutant KRAS circulating tumor DNA (ctDNA) from a
blood draw. With 64% specificity, 99.5% sensitivity, and a
demonstrated prognostic value for overall survival, this
combinatorial strategy has considerable promise for earlier
detection of pancreatic cancer (Cohen et al., 2017). A year later,
this strategy was expanded further by CancerSEEK,
implementing a panel of ctDNA, consisting of 61 amplicons
spread across 16 genes, combined with 8 protein biomarkers.
CancerSEEK allows for detection of breast, colorectal,
esophageal, liver, lung, ovarian, pancreatic, and stomach
cancers from a single blood sample with a specificity of 99%
and a sensitivity between from 69%–98%, depending on the type
of cancer (Cohen et al., 2018). The efforts from Cohen et al.
highlight the potential of proteogenomic panels for a variety of
diseases.

3.2 Patient stratification

In addition to diagnostic and prognostic applications,
biomarkers enable patient stratification, allowing for informed
and individualized treatment courses. The use of large-scale data
to identify “treatable traits” in patients has been a topic of intense
focus (König et al., 2017), as conventional classifications based on
generalized markers have led to misclassification and ineffective
treatment of clinically and pathologically heterogeneous disorders
(Nevo et al., 2016). In an attempt to expand upon the five currently
implemented breast-cancer subtypes derived from a set of
50 transcriptional signatures (i.e., PAM50 markers) (Parker et al.,
2009), Johansson et al. utilized an integrated proteomics analysis on
tumor tissue from patients representing each of the five
PAM50 subtypes. (Johansson et al., 2019). In addition to
identifying proteins derived from non-coding regions as
candidate immunotherapeutic targets, network analyses
succeeded in stratifying known patient classifications further,
proposing previously unrecognized biomarkers and subclasses to
guide therapeutic development.

Two studies in lung adenocarcinoma have also highlighted the
potential of applying proteogenomics in patient stratification. Chen
et al. revealed 5 mutational profiles previously unidentified in LUAD
in an East Asian cohort (Chen et al., 2020). The group identified
protein and genetic signatures in these subtypes strongly tied to age,
gender, and EGFR-mutation status, contributing important
considerations for the development of disease-modifying
therapies. Furthermore, integrated analyses of multi-omics data
from glioblastoma (GBM) samples unveiled new immune-based
subtypes, expanding on previous classifications based only on
transcriptomic and genomic data (Wang et al., 2017; Wang et al.,
2021). Notably, the study subdivided glioblastoma into two distinct
groups, allowing for future, more in-depth mechanistic studies to
reveal therapeutic vulnerabilities in these newly discovered
subclasses for precision medicine (Oh et al., 2020). Leveraging
genomic, transcriptomic, and proteomic data together has

provided rich resources for better patient stratification, as well as
the identification of potential biomarker and therapeutic targets.

4 Biomarker discovery workflow using
proteogenomics

4.1 Genomics generates variant databases
for proteomics

Here, we propose a general MS-based proteogenomic workflow
for the identification of variant protein markers in human
biospecimens (Figure 2). The first step in creating customized
databases capable of detecting variants in MS-based approaches
is to identify disease-relevant genomic variants. Informatic tools for
variant calling are widely available. The most common variants are
SNV variants—commonly identified through tools such as Platypus
(Rimmer et al., 2014) and Samtools (Li, 2011)—and splicing
variants—which can be identified using MAJIQ (Vaquero-Garcia
et al., 2016) and MapSplice (Wang et al., 2010), among other tools.
Novel peptide products can be predicted from RNA-sequencing
results via ECgene (Lee et al., 2006), FastDB (De La Grange et al.,
2005), FANTOM3 (Carninci et al., 2005), or the ASTD (Koscielny
et al., 2009). Novel protein sequences generated from in silico
translation of the reference genome and/or transcriptome—e.g.,
via tools such as AGUSTUS (Stanke et al., 2006), GENEID
(Parra et al., 2000) or EuGENE (Foissac et al., 2003)—allow for
customized databases with the power to identify and validate
proteins and peptides translated from antisense strands, non-
coding genes, intergenic regions, and untranslated regions
(UTRs) (Nesvizhskii, 2014). Once the RNA sequences of interest
are identified, in silico translation tools, such as Transeq (CITE),
Quilts (Ruggles et al., 2016), and GalaxyP (Sheynkman et al., 2014),
can be used to predict the resulting amino acid sequence and build a
custom peptide database. With this customized FASTA database, it
is possible to perform searches of proteomics raw files for sequences
of interest using MS search engines, such as PEAKS (Tran et al.,
2019), Proteome Discoverer, andMaxQuant (Cox andMann, 2008).

Integrated proteogenomic algorithms are also available for “one-
stop” analyses, starting from variant calling to MS-spectra
annotation (Table 2); however, some tools are not as popular as
database search engines and have not been thoroughly validated.
Beyond generating patient-specific databases, common mutations
from existing databases (Table 3) can be introduced to native
proteome databases. For example, Catalogue of Somatic
Mutations in Cancer (COSMIC), containing somatic mutations
from variety of cancer types, has been widely used for generating
customized reference and identifying cancer-specific mutations
(Zhu et al., 2018). Qi and colleagues utilized LNCipedia to
predict lncRNAs regions and discovered lncRNA-coded
neoantigens in lung adenocarcinoma (Qi et al., 2021). A key
consideration in developing a proteogenomic database search
strategy is the determination of an appropriate false-discovery
rate (FDR). By increasing the database size through the
integration of native plus variants proteome, the identified
variant peptides are prone to high false positive rates from
multiple comparisons. Therefore, additional targeted methods are
required for validation.
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4.2 Identification of variant protein
biomarkers

Similar to NGS approaches, MS-based proteomics has rapidly
advanced throughout the past two decades. Performing total RNA-
seq in biofluids has proven to be technically challenging (Everaert
et al., 2019). Given the low quantity and quality of RNA in biofluids,
most biomarker studies focus on circulating DNA and small RNAs
(Buschmann et al., 2016; Vo et al., 2019). Therefore, protein biomarkers
have become the most common clinical markers in body fluids. To
increase proteome coverage, various approaches have been adopted.
These include a) offline fractionation to reduce sample complexity; b)
high-abundant protein depletion to remove housekeeping proteins in
biofluids; c) enrichment for tissue-derived extracellular vehicles (EVs)
(Fiandaca et al., 2015; Mustapic et al., 2017; Heath et al., 2018); d)
nanoparticle-based enrichment of low-abundant proteins and co-
depletion of high-abundant proteins (Kim et al., 2018; Tiambeng
et al., 2020); and e) use of multiple proteases to detect peptides not
typically generated by standard trypsin cleavage (Giansanti et al., 2016).

For data acquisition in discovery proteomics, data-dependent
acquisition (DDA) and data-independent acquisition (DIA) are
commonly used in MS. Previous studies demonstrated that DDA
and DIA acquire different groups of peptides; this could extend the

pool of total peptide identification and protein coverage (Reilly et al.,
2021). DDA typically generates less complex, but more specific,
MS2 spectra of selected peptides; however, only the most abundant
peptide precursors are selected. On the other hand, DIA is a more
inclusive approach to fragment all peptide precursors, including
low-abundant ones. Although DDA has beenmore widely applied in
biomarker studies, DIA has gained traction more recently for its
applications in identifying low-abundant peptides (Guo et al., 2015;
Latonen et al., 2018). The increased scan speed of high-resolution
MS allows DIA to use narrower isolation windows and cover a
broader m/z range (e.g., 400–1,000). DIA generally provides higher
confident peptides due to the longer MS2 injection time, which
allows for high-resolutionMS2 spectra. Database search of DIA data
typically requires a spectral library generated from the respective
DDA MS run; notably, recent studies demonstrate the direct
application of DIA data using a protein sequence library where
“pseudo-spectra” and predicted retention times of each precursor
ion is generated by search engines, such as DIA-Umpire (Tsou et al.,
2015), Spectronaut, and DIA-NN (Demichev et al., 2020). Emerging
evidence shows DIA is the next-generation data acquisition
approach for label-free proteomics.

Targeted proteomic analyses are commonly employed to
validate mutant peptides discovered through DIA/DDA shotgun

FIGURE 2
A comprehensive proteogenomic strategy in biomarker discovery. Genomic sequencing reads are aligned to the reference transcriptome to
generate BAM files. Variants are called from aligned reads (i.e., Variant Call Format, VCFs). The VCF files are 6-frame (for DNA) or 3-frame (for RNA)
translated to produce customized protein sequence (FASTA) files. Mass spectrometry (MS)-based protein sequencing using data-dependent acquisition
(DDA) or data-independent acquisition (DIA) is performed. The MS raw files are searched against the custom library generated from genomic data.
Identified variant biomarker candidates are validated using targeted proteomics or antibody-based immunoassays in large cohort studies.
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proteomics and to generate high-throughput MS-based assays for
clinical use. Targeted approaches, including multiple reaction
monitoring (MRM) and parallel reaction monitoring (PRM),

align select or all MS2 transitions and retention times of in vivo
peptides and their “heavy isotope” synthetic counterparts that serve
as internal standards. Typically, a list of m/z ratio of the precursor

TABLE 2 Informatic tools for creating customized protein sequence libraries using RNA-seq data.

Tool Purpose Link to tool Ref

GalaxyP Creates customized proteomic databases suitable for discovery proteomics using RNA-
seq data

http://galaxyp.org Sheynkman et al.
(2014)

MiTPeptideDB Bioinformatic workflow for detection of novel peptides from RNA-seq data, including
filters for peptide detectability

http://bit.ly/MiTPeptideDB Guruceaga et al.
(2020)

Quilts Integrates sample-specific genomic and transcriptomic data to predict peptides
resulting from single nucleotide variants, splice variants, and fusion genes

http://fenyolab.org/tools/tools.html Ruggles et al.
(2016)

Proteoformer Uses ribosome profiling data to create peptide product databases http://www.biobix.be/proteoformer Crappe et al. (2015)

JUMPg Uses RNA-seq data to generate databases of DNA polymorphisms, mutations, and
splice junctions, as well as six-frame protein fragments

https://github.com/gatechatl/JUMPg Li et al. (2016b)

IPAW Predicts peptide products across the full range of the tryptic peptidome, including
pseudogenes, lncRNAs, short ORFs, alternative ORFs, N-terminal extensions, and
intronic sequences, searches target and decoy databases, and provides an FDR-value

for novel and variant peptides

https://github.com/lehtiolab/
proteogenomics-analysis-workflow

Zhu et al. (2018)

PGA Creates customized protein databases from RNA-seq data without reliance on a
reference genome, searches tandem mass spec datasets, and identifies novel peptides

http://bioconductor.org/packages/3.8/bioc/
html/PGA.html

Wen et al. (2016)

Peppy Generates peptide and decoy databases from RNA-seq data, matches peptides to MS/
MS spectra, and assigns confidence values to matches

http://geneffects.com/peppy Risk et al. (2013)

Splicify Combines RNA-seq and tandem mass spectrometry data to identify protein isoforms
that arise from differential splicing

https://github.com/NKI-TGO/SPLICIFY Komor et al. (2017)

FusionPro Predicts translation products of fusion genes using a transcriptome-informed
approach to identify fusion junction isoforms

https://bitbucket.org/chaeyeon/fusionpro Kim et al. (2019)

PoGo Peptide-to-genome mapping tool https://www.sanger.ac.uk/tool/pogo/ Schlaffner et al.
(2017)

PGx Maps peptides onto genomic coordinates https://github.com/FenyoLab/PGx Askenazi et al.
(2016)

TABLE 3 Databases of common genetic variants and MS data repositories.

Database Purpose Link to database Ref

COSMIC Catalogue of Somatic Mutations in Cancer https://cancer.sanger.ac.uk/cosmic Tate et al. (2019)

TCGA Database of raw and processed genome sequencing data for
over 30 human tumors

https://gdc.cancer.gov/ Hoadley et al.
(2018)

CPTAC Mass spectrometry-based proteomic dataset for selected
breast, colon, and ovarian tumors from TCGA

https://gdc.cancer.gov/about-gdc/contributed-genomic-data-
cancer-research/clinical-proteomic-tumor-analysis-consortium-

cptac

Ellis et al.
(2013b)

Human Protein
Atlas

Database of human proteins in cells, tissues, and organs uisng
multi-omics appoarches and system biology

https://www.proteinatlas.org/ Uhlen et al.
(2015)

ProteomeXchange Regularly updated repository of over 8,000 human (including
cell lines) MS/MS proteomics and SRM datasets

http://www.proteomexchange.org/ Vizcaino et al.
(2014)

LNCipedia Public database for long non-coding RNA (lncRNA)
sequence and annotation

https://lncipedia.org/ Volders et al.
(2019)

PeptideAtlas Compendium of results from >150,000 MS runs processed
through the Trans Proteomic Pipeline

http://www.peptideatlas.org/builds/human/ Desiere et al.
(2006)

DEPOD Database of human phosphatases, their protein and non-
protein substrates, and dephosphorylation sites

http://www.depod.org Duan et al.
(2015)

ActiveDriverDB Proteogenomic database of PTM-associated mutations in
human disease

https://www.ActiveDriverDB.org Krassowski et al.
(2018)
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https://www.nature.com/articles/ncomms10238
https://www.sciencedirect.com/science/article/pii/S153561081930100X
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https://www.nature.com/articles/s41467-019-09018-y
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ions and their daughter ions is built into the MS instrumentation
method to selectively monitor targets. Furthermore, DIA is a “semi-
targeted” approach, as the MS2 transitions that are used for
qualification can also be visualized as PRM-like spectra in
Skyline (MacLean et al., 2010) and SpectroDive. Many proof-
of-concept studies have utilized targeted methods to validate
variant peptides, as the “gold standard,” ultra-sensitive
approach. The biomarker specificity of validated peptides
should also be demonstrated in large-scale cohorts
containing disease and healthy control samples. If the variant
peptides are validated as specific biomarkers, scalable MS-based
MRM assays can be developed to rapidly detect such biomarkers
in patient samples for point-of-care diagnosis and disease
subtype stratification.

5 Perspective

Combining NGS and MS-based proteomics represents a
powerful strategy for both biomarker discovery and
investigation of fundamental biology. However, obtaining
sufficient high-quality RNA-seq reads can be challenged by
the integrity and quantity of available biospecimens.
Furthermore, short-read RNA-seq could easily miss mutation
sites and mis-splicing events; therefore, long-read RNA-seq has
emerged as a complementary approach, despite its shallower
sequencing depth. Although proteome coverage has
significantly improved in recent years, low-abundant proteins
may still be difficult to identify with current tools. Many
approaches have been applied to increase protein coverage,
but they are generally time-consuming and increase intra-
sample variation. Clinical assays must be quick, robust, and
highly reproducible. Therefore, MS instrumentation and
proteomic sample preparation need further improvement to
boost sensitivity and specificity. De novo proteins could also be
structurally unstable and degraded by proteases and peptidases
within the lysosome and endosome, thereby evading
detection. Overall, despite these challenges, sequence-centric
approaches, combined with state-of-the-art mass spectrometry,
contribute to the evolving role of proteogenomics in biomedical
research and precision-medicine based initiatives in cancer,
neurodegeneration, and beyond.
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