157 research outputs found

    Distributed Linear Regression with Compositional Covariates

    Full text link
    With the availability of extraordinarily huge data sets, solving the problems of distributed statistical methodology and computing for such data sets has become increasingly crucial in the big data area. In this paper, we focus on the distributed sparse penalized linear log-contrast model in massive compositional data. In particular, two distributed optimization techniques under centralized and decentralized topologies are proposed for solving the two different constrained convex optimization problems. Both two proposed algorithms are based on the frameworks of Alternating Direction Method of Multipliers (ADMM) and Coordinate Descent Method of Multipliers(CDMM, Lin et al., 2014, Biometrika). It is worth emphasizing that, in the decentralized topology, we introduce a distributed coordinate-wise descent algorithm based on Group ADMM(GADMM, Elgabli et al., 2020, Journal of Machine Learning Research) for obtaining a communication-efficient regularized estimation. Correspondingly, the convergence theories of the proposed algorithms are rigorously established under some regularity conditions. Numerical experiments on both synthetic and real data are conducted to evaluate our proposed algorithms.Comment: 35 pages,2 figure

    Efficacy and safety of small-incision corneal intrastromal lenticule implantation for hyperopia correction: a systematic review and meta-analysis

    Get PDF
    PurposeTo assess the efficacy and safety of intrastromal lenticule implantation for the treatment of hyperopia.MethodsA systematic search of PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Internet, and Wan Fang Database identified studies on small-incision intrastromal lenticule implantation for hyperopia correction until January 2023. The Joanna Briggs Institute (JBI) critical appraisal tool was used to assess the quality of the retrospective research, and the Methodological Index for Non-randomized Studies (MINORS) was used to assess the quality of the prospective research. This study included postoperative visual outcomes, corneal morphology, and biomechanical outcomes.ResultsA total of 456 articles were identified, of which 10 were included in the meta-analysis. Ten single-arm studies involving 190 eyes were included. A meta-analysis demonstrated that corneal intrastromal lenticule implantation treatment significantly improved hyperopia. Uncorrected distance visual acuity (UDVA) significantly improved compared to the preoperative value (p = 0.027), corrected distance visual acuity showed no difference compared to the preoperative value (p = 0.27), and 87% eyes have no loss of one or more lines in the Snellen lines of CDVA (p < 0.00001). There was a significant difference between the spherical equivalent refractive (SE) and preoperative examination (p < 0.00001), 52% of eyes had ±0.5 diopters (D) postoperative SE (p < 0.00001), and 74% eyes had ±1.0 D postoperative SE (p < 0.00001). The central corneal thickness (CCT) increased by 72.68 μm compared to that preoperatively (p < 0.00001), and corneal curvature increased by 4.18D (p < 0.00001). The Q-value decreased by 0.82 (p < 0.00001), and higher-order aberration (HOA) decreased by 0.66 (p < 0.00001).ConclusionSmall-incision intrastromal lenticule implantation may be an effective solution for correcting hyperopia. The effect of improved vision is significant, but further exploration is needed for changes in corneal biomechanics and long-term safety.Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42023432343

    Процессы структурообразования и свойства бетонов на органогидравлических вяжущих

    Get PDF
    The article addresses the issues of structure formation of road composite materials containing hydraulic (рortland cement) and organic (bitumen) binders. It has been determined that organic and hydraulic binders, being thermodynamically incompatible, are capable of interaction and complement each other. Structure formation processes are associated with interphase transition layers interaction mechanism and the direct formation of phase contacts with cement crystallohydrates. The interphase boundary is diffuse and is established through interphase transition layers. The emergence of interfacial layers is thermodynamically advantageous, since it contributes to a decrease in Gibbs free energy and does not contradict modern concepts of solid state physics. It was established that with cement content of about 30 % of complex bitumen-cement binder volume, there will appear (nucleate) phase contacts that will prevail in the binder structure when the cement content is more than 60 %. In the case phase contacts prevail, concrete will demonstrate significant strength at high temperatures, but low temperature and fatigue crack resistance, which will lead to their durability loss. The cement content of 30–40 % of the total complex binder can be considered optimal

    Excisanin A suppresses proliferation by inhibiting hypoxiainducible factor-1α expression in human hepatocellular carcinoma cells

    Get PDF
    Purpose: To investigate the effect of excisanin A on human hepatocellular carcinoma cells as well as to elucidate its mechanism of action. Methods: Molecular docking was used to determine the binding characteristics of excisanin A to HIF-1α protein. The transcriptional activation and viability of excisanin A were assessed using Luciferase reporter and MTT assay. The HIF-1α protein in the nucleus was assayed using western blot and immunofluorescence. HIF-1α and VEGF mRNA levels were evaluated using reverse-transcription polymerase chain reaction (RT-PCR). Cell proliferation was determined by flow cytometry, as well as by EdU and clonogenic assays. In vivo tumor growth was assessed in a murine xenograft model of SKHep1 cells. Results: Excisanin A inhibited HIF-1α transcriptional activation, as well as HIF-1α protein synthesis (p < 0.001). Excisanin A also reduced VEGF protein and mRNA expressions (p < 0.001). In addition, the compound inhibited the proliferation of hepatocellular carcinoma cells. and tumor growth in the xenograft tumor model. Conclusion: Excisanin A is a potent HIF-1α inhibitor, supporting its potential development for human hepatoma therapy. Keywords: Excisanin A, HIF-1α, Protein synthesis, Hepatoma therap

    A dimeric Smac/ diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo

    Get PDF
    Caspase activation, the executing event of apoptosis, is under deliberate regulation. IAP proteins inhibit caspase activity, whereas Smac/Diablo antagonizes IAP. XIAP, a ubiquitous IAP, can inhibit both caspase-9, the initiator caspase of the mitochondrial apoptotic pathway, and the downstream effector caspases, caspase-3 and caspase-7. Smac neutralizes XIAP inhibition of caspase-9 by competing for binding of the BIR3 domain of XIAP with caspase-9, whereas how Smac liberates effector caspases from XIAP inhibition is not clear. It is generally believed that binding of Smac with IAP generates a steric hindrance that prevents XIAP from inhibiting effector caspases, and therefore small molecule mimics of Smac are not able to reverse inhibition of the effector caspases. Surprisingly, we show here that binding of a dimeric Smac N-terminal peptide with the BIR2 domain of XIAP effectively antagonizes inhibition of caspase-3 by XIAP. Further, we defined the dynamic and cooperative interaction of Smac with XIAP: binding of Smac with the BIR3 domain anchors the subsequent binding of Smac with the BIR2 domain, which in turn attenuates the caspase-3 inhibitory function of XIAP. We also show that XIAP homotrimerizes via its C-terminal Ring domain, making its inhibitory activity toward caspase-3 more susceptible to Smac

    The Growth and N Retention of Two Annual Desert Plants Varied Under Different Nitrogen Deposition Rates

    Get PDF
    Nitrogen (N) partitioning between plant and soil pools is closely related to biomass accumulation and allocation, and is of great importance for quantifying the biomass dynamics and N fluxes of ecosystems, especially in low N-availability desert ecosystems. However, partitioning can differ among species even when growing in the same habitat. To better understand the variation of plant biomass allocation and N retention within ephemeral and annual species we studied the responses of MalcolmiaAfricana (an ephemeral) and Salsola affinis (an annual) to N addition, including plant growth, N retention by the plant and soil, and N lost to the environment using 15N (double-labeled 15NH415NO3 (5.16% abundance) added at 0, 0.8, 1.6, 3.2, and 6.4 g pot-1, equivalent to 0, 15, 30, 60, and 120 kg N ha-1) in a pot experiment. Higher N addition (N120) inhibited plant growth and biomass accumulation of the ephemeral but not the annual. In addition, the aboveground:belowground partitioning of N (the R:S ratio) of the ephemeral decreased with increasing N addition, but that of the annual increased. The N input corresponding to maximum biomass and 15N retention of the ephemeral was significantly less than that of the annual. The aboveground and belowground retention of N in the ephemeral were significantly less than those of the annual, except at low N rates. The average plant–soil system recovery of added 15N by the ephemeral was 70%, significantly higher than that of the annual with an average of 50%. Although the whole plant–soil 15N recovery of this desert ecosystem decreased with increasing N deposition, our results suggested that it may vary with species composition and community change under future climate and elevated N deposition

    Rnd3/RhoE Modulates HIF1α/VEGF Signaling by Stabilizing HIF1α and Regulates Responsive Cardiac Angiogenesis

    Get PDF
    The insufficiency of compensatory angiogenesis in the heart of patients with hypertension contributes to heart failure transition. The hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling cascade controls responsive angiogenesis. One of the challenges in reprograming the insufficient angiogenesis is to achieve a sustainable tissue exposure to the proangiogenic factors, such as HIF1α stabilization. In this study, we identified Rnd3, a small Rho GTPase, as a proangiogenic factor participating in the regulation of the HIF1α-VEGF signaling cascade. Rnd3 physically interacted with and stabilized HIF1α, and consequently promoted VEGFA expression and endothelial cell tube formation. To demonstrate this proangiogenic role of Rnd3 in vivo, we generated Rnd3 knockout mice. Rnd3 haploinsufficient (Rnd3(+/-)) mice were viable, yet developed dilated cardiomyopathy with heart failure after transverse aortic constriction stress. The poststress Rnd3(+/-) hearts showed significantly impaired angiogenesis and decreased HIF1α and VEGFA expression. The angiogenesis defect and heart failure phenotype were partially rescued by cobalt chloride treatment, a HIF1α stabilizer, confirming a critical role of Rnd3 in stress-responsive angiogenesis. Furthermore, we generated Rnd3 transgenic mice and demonstrated that Rnd3 overexpression in heart had a cardioprotective effect through reserved cardiac function and preserved responsive angiogenesis after pressure overload. Finally, we assessed the expression levels of Rnd3 in the human heart and detected significant downregulation of Rnd3 in patients with end-stage heart failure. We concluded that Rnd3 acted as a novel proangiogenic factor involved in cardiac responsive angiogenesis through HIF1α-VEGFA signaling promotion. Rnd3 downregulation observed in patients with heart failure may explain the insufficient compensatory angiogenesis involved in the transition to heart failure

    Процессы структурообразования и свойства бетонов на органогидравлических вяжущих

    Get PDF
    The article addresses the issues of structure formation of road composite materials containing hydraulic (рortland cement) and organic (bitumen) binders. It has been determined that organic and hydraulic binders, being thermodynamically incompatible, are capable of interaction and complement each other. Structure formation processes are associated with interphase transition layers interaction mechanism and the direct formation of phase contacts with cement crystallohydrates. The interphase boundary is diffuse and is established through interphase transition layers. The emergence of interfacial layers is thermodynamically advantageous, since it contributes to a decrease in Gibbs free energy and does not contradict modern concepts of solid state physics. It was established that with cement content of about 30 % of complex bitumen-cement binder volume, there will appear (nucleate) phase contacts that will prevail in the binder structure when the cement content is more than 60 %. In the case phase contacts prevail, concrete will demonstrate significant strength at high temperatures, but low temperature and fatigue crack resistance, which will lead to their durability loss. The cement content of 30–40 % of the total complex binder can be considered optimal.Рассмотрены вопросы структурообразования дорожных композитных материалов, содержащих в своем составе гидравлические (портландцемент) и органические (битум) вяжущие. Установлено, что, являясь термодинамически несовместимыми, органические и гидравлические вяжущие способны к взаимодействию и дополняют друг друга. Процессы структурообразования связаны с механизмом взаимодействия межфазных переходных слоев и непосредственного образования фазовых контактов кристаллогидратами цемента. Исследования процессов срастания кристаллогидратов цемента через органические пленки, микроскопический и рентгеноструктурный анализ подтвердили данные результаты. Граница раздела фаз является размытой и осуществляется через межфазные переходные слои. Процесс появления межфазных слоев выгоден с термодинамической точки зрения, поскольку способствует уменьшению свободной энергии Гиббса и не противоречит современным представлениям физики твердого тела. При содержании цемента около 30 % от объема комплексного битумно-цементного вяжущего начнут появляться (зарождаться) фазовые контакты, которые будут преобладать в структуре вяжущего при содержании цемента более 60 % по объему. В случае преобладания фазовых контактов бетоны будут обладать значительной прочностью при высоких температурах, но низкой температурной и усталостной трещиностойкостью, что приведет к потере их долговечности. Оптимальным можно считать содержание цемента в количестве 30–40 % от общего объема комплексного вяжущего
    corecore