144 research outputs found

    Fluctuating levels of reprogramming factor expression in cultured human undifferentiated keratinocytes

    Get PDF
    Although human undifferentiated keratinocytes (HUKs) can be reprogrammed to become induced pluripotent stem cells (iPSCs) with high efficiency and rapid kinetics by transducing reprogramming factors (RFs), the endogenous expression of reprogramming factors in cultured HUKs is not clear at different stages. In this study, keratinocytes were isolated from foreskin of adult subject (18 years old) and cultured on collagen type IV-coated culture dishes in a low-calcium, serum-free medium (Epilife, Invitrogen). In order to clarify the expression patterns of RFs and other stem cell markers in cultured human keratinocytes, total RNA was extracted using Trizol reagent, and polymerase chain reaction (PCR) was performed using established GenBank sequences to design primers. The subsequent PCR analysis was carried out by agarose gel electrophoresis. The expression levels of RFs and other stem cell markers in human HUKs clearly fluctuated during culturing, which supports the hypothesis that HUKs might be reprogrammed into a pluripotent state when the maximum levels of RFs expression are maintained by appropriate culture conditions.Keywords: Human undifferentiated keratinocytes, reprogramming factors, expression fluctuationAfrican Journal of Biotechnology Vol. 12(35), pp. 5389-539

    Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: advancing the frontier of probiotic-based therapeutics

    Get PDF
    IntroductionIn an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities.MethodsThe research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains.ResultsThe comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin.ConclusionThis research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions

    Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements

    Get PDF
    Genus Macaca (Cercopithecidae: Papionini) is one of the most successful primate radiations. Despite previous studies on morphology and mitochondrial DNA analysis, a number of issues regarding the details of macaque evolution remain unsolved. Alu elements are a class of non-autonomous retroposons belonging to short interspersed elements that are specific to the primate lineage. Because retroposon insertions show very little homoplasy, and because the ancestral state (absence of the SINE) is known, Alu elements are useful genetic markers and have been utilized for analyzing primate phylogenentic relationships and human population genetic relationships. Using PCR display methodology, 298 new Alu insertions have been identified from ten species of macaques. Together with 60 loci reported previously, a total of 358 loci are used to infer the phylogenetic relationships of genus Macaca. With regard to earlier unresolved issues on the macaque evolution, the topology of our tree suggests that: 1) genus Macaca contains four monophyletic species groups; 2) within the Asian macaques, the silenus group diverged first, and members of the sinica and fascicularis groups share a common ancestor; 3) Macaca arctoides are classified in the sinica group. Our results provide a robust molecular phylogeny for genus Macaca with stronger statistical support than previous studies. The present study also illustrates that SINE-based approaches are a powerful tool in primate phylogenetic studies and can be used to successfully resolve evolutionary relationships between taxa at scales from the ordinal level to closely related species within one genus. © 2009 Elsevier B.V. All rights reserved

    Coexistence of Microbial Species in Structured Communities by Forming a Hawk-Dove Game Like Interactive Relationship

    Get PDF
    Microorganisms evolve kinds of elaborate interaction models that can form relatively stable communities in a wide range of ecosystems. It is recognized that the spatial genetic structure of microbes in surface-attached environments lays a good foundation for the persistence of polymicrobial communities in adverse conditions. However, the interacting dynamics of microbes in facilitating the formation and stabilization of community structure still remains elusive. In this study, we identify a hawk-dove game like interspecific relationship between the two Gram-negative opportunistic pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae, which naturally coexist in insect gut and can cocolonize human tissues. Specifically, although P. aeruginosa had significant competitive advantage over cocultured K. pneumoniae on solid medium with rich nutrient factors, K. pneumoniae could resist the suppression of P. aeruginosa by enhancing the expression of membrane transporters induced by the extracellular metabolites of P. aeruginosa. By contrast, under the condition that K. pneumoniae had a growth advantage but P. aeruginosa met a metabolic burden in producing quorum-sensing-controlled extracellular products, the frequency of K. pneumoniae would be slightly higher than P. aeruginosa during the coexistence because K. pneumoniae was also capable of exploiting the extracellular metabolite from P. aeruginosa. In addition, P. aeruginosa quorum-sensing variant could reap benefits from K. pneumoniae in turn and reach a relatively stable two species equilibrium. These findings provide an explanation for the formation and maintenance of polymicrobial communities in different spatially structured environments, and thus may contribute to understanding the complex interspecific interactions of microbes in local communities and shed new light on the development of social microbiology

    Pseudomonas aeruginosa Quorum-Sensing and Type VI Secretion System Can Direct Interspecific Coexistence During Evolution

    Get PDF
    It is reported that a wide range of bacterial infections are polymicrobial, and the members in a local microcommunity can influence the growth of neighbors through physical and chemical interactions. Pseudomonas aeruginosa is an important opportunistic pathogen that normally causes a variety of acute and chronic infections, and clinical evidences suggest that P. aeruginosa can be frequently coisolated with other pathogens from the patients with chronic infections. However, the interspecific interaction and the coexisting mechanism of P. aeruginosa with coinfecting bacterial species during evolution still remain largely unclear. In this study, the relationships of P. aeruginosa with other Gram-positive (Staphylococcus aureus) and Gram-negative (Klebsiella pneumoniae) are investigated by using a series of on-plate proximity assay, in vitro coevolution assay, and RNA-sequencing. We find that although the development of a quorum-sensing system contributes P. aeruginosa a significant growth advantage to compete with S. aureus and K. pneumoniae, the quorum-sensing regulation of P. aeruginosa will be decreased during evolution and thus provides a basis for the formation of interspecific coexistence. The results of comparative transcriptomic analyses suggest that the persistent survival of S. aureus in the microcommunity has no significant effect on the intracellular transcriptional pattern of P. aeruginosa, while a more detailed competition happens between P. aeruginosa and K. pneumoniae. Specifically, the population of P. aeruginosa with decreased quorum-sensing regulation can still restrict the proportion increase of K. pneumoniae by enhancing the type VI secretion system-elicited cell aggressivity during further coevolution. These findings provide a general explanation for the formation of a dynamic stable microcommunity consisting of more than two bacterial species, and may contribute to the development of population biology and clinical therapy

    Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose

    Get PDF
    The giant panda feeds almost exclusively on bamboo, a diet highly enriched in lignin and cellulose, but is characterized by a digestive tract similar to carnivores. It is still large unknown if and how the giant panda gut microbiota contributes to lignin and cellulose degradation. Here we show the giant pandas’ gut microbiota does not significantly contribute to cellulose and lignin degradation. We found that no operational taxonomic unit had a nearest neighbor identified as a cellulolytic species or strain with a significant higher abundance in juvenile than cubs, a very low abundance of putative lignin and cellulose genes existed in part of analyzing samples but a significant higher abundance of genes involved in starch and hemicellulose degradation in juveniles than cubs. Moreover, a significant lower abundance of putative cellulolytic genes and a significant higher abundance of putative α-amylase and hemicellulase gene families were present in giant pandas than in omnivores or herbivores

    Phylogeography of the South China Field Mouse (Apodemus draco) on the Southeastern Tibetan Plateau Reveals High Genetic Diversity and Glacial Refugia

    Get PDF
    The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure

    Effects of Supplementary Feeding on the Breeding Ecology of the Buff-Throated Partridge in a Tibetan Sacred Site, China

    Get PDF
    Our goal was to document effects of year-round supplemental feeding on breeding ecology of the Buff-throated Partridge, Tetraophasis szechenyii, within a Tibetan sacred site. We evaluated effects of supplemental feeding used as religious/cultural practices which could potentially aid conservation of endangered phasianids. We compared fed breeding groups to neighboring nonfed groups. Fed groups initiated first clutches significantly earlier than nonfed groups. Earlier laying groups within fed and nonfed groups showed significantly lower hatching rates than later groups; however, fed groups showed significantly higher hatching rates than nonfed groups laying in the same period. Earlier laying increased opportunities to renest. All six fed groups with clutch failures renested compared to only one of five nonfed groups with clutch failures. Fed female breeders showed significantly greater investment in their young with larger clutches and larger eggs, which likely increased survivability of early hatchlings. We observed no predation on birds at feeding sites and recorded only four cases of predation on incubating females, which showed no detectable difference between fed and nonfed groups. Ground-nesting birds typically face high risks of predation. Ten of the 48 groups nested in trees, which occurs in few phasianid species. Tree nests showed significantly higher hatching rates compared to ground nests; however, we found no significant difference in tree nesting between fed and nonfed groups. This partridge is one of four gallinaceous species with cooperative breeding. Breeding groups with helpers had significantly greater reproductive success than single pairs, and fed female breeders with helpers laid bigger eggs than single pairs. Comparing annual reproductive output per group, fed groups not only produced significantly more independent young (≥150 days post-hatching), their young hatched significantly earlier, which likely have greater reproductive value over later hatched young of nonfed groups. Supplemental feeding year-round is likely what enabled the successes of the fed partridges
    • …
    corecore