4 research outputs found

    Coherent manipulation of nuclear spins in the strong driving regime

    Full text link
    Spin-based quantum information processing makes extensive use of spin-state manipulation. This ranges from dynamical decoupling of nuclear spins in quantum sensing experiments to applying logical gates on qubits in a quantum processor. Here we present an antenna for strong driving in quantum sensing experiments and theoretically address challenges of the strong driving regime. First, we designed and implemented a micron-scale planar spiral RF antenna capable of delivering intense fields to a sample. The planar antenna is tailored for quantum sensing experiments using the diamond's nitrogen-vacancy (NV) center and should be applicable to other solid-state defects. The antenna has a broad bandwidth of 22 MHz, is compatible with scanning probes, and is suitable for cryogenic and ultrahigh vacuum conditions. We measure the magnetic field induced by the antenna and estimate a field-to-current ratio of 113±16113\pm 16 G/A, representing a x6 increase in efficiency compared to the state-of-the-art. We demonstrate the antenna by driving Rabi oscillations in 1^1H spins of an organic sample on the diamond surface and measure 1^1H Rabi frequencies of over 500 kHz, i.e., π\mathrm{\pi}-pulses shorter than 1 μs\mu s - faster than previously reported in NV-based nuclear magnetic resonance (NMR). Finally, we discuss the implications of driving spins with a field tilted from the transverse plane in a regime where the driving amplitude is comparable to the spin-state splitting, such that the rotating wave approximation does not describe the dynamics well. We present a recipe to optimize pulse fidelity in this regime based on a phase and offset-shifted sine drive, that may be optimized without numerical optimization procedures or precise modeling of the experiment. We consider this approach in a range of driving amplitudes and show that it is particularly efficient in the case of a tilted driving field

    Coherent manipulation of nuclear spins in the strong driving regime

    Get PDF
    Spin-based quantum information processing makes extensive use of spin-state manipulation. This ranges from dynamical decoupling of nuclear spins in quantum sensing experiments to applying logical gates on qubits in a quantum processor. Fast manipulation of spin states is highly desirable for accelerating experiments, enhancing sensitivity, and applying elaborate pulse sequences. Strong driving using intense radio-frequency (RF) fields can, therefore, facilitate fast manipulation and enable broadband excitation of spin species. In this work, we present an antenna for strong driving in quantum sensing experiments and theoretically address challenges of the strong driving regime. First, we designed and implemented a micron-scale planar spiral RF antenna capable of delivering intense fields to a sample. The planar antenna is tailored for quantum sensing experiments using the diamond's nitrogen-vacancy (NV) center and should be applicable to other solid-state defects. The antenna has a broad bandwidth of 22 MHz, is compatible with scanning probes, and is suitable for cryogenic and ultrahigh vacuum conditions. We measure the magnetic field induced by the antenna and estimate a field-to-current ratio of 113 +/- 16 G/A, representing a six-fold increase in efficiency compared to the state-of-the-art, crucial for cryogenic experiments. We demonstrate the antenna by driving Rabi oscillations in 1H spins of an organic sample on the diamond surface and measure 1H Rabi frequencies of over 500 kHz, i.e. pi -pulses shorter than 1 mu s -an order of magnitude faster than previously reported in NV-based nuclear magnetic resonance (NMR). Finally, we discuss the implications of driving spins with a field tilted from the transverse plane in a regime where the driving amplitude is comparable to the spin-state splitting, such that the rotating wave approximation does not describe the dynamics well. We present a simple recipe to optimize pulse fidelity in this regime based on a phase and offset-shifted sine drive, which may be optimized in situ without numerical optimization procedures or precise modeling of the experiment. We consider this approach in a range of driving amplitudes and show that it is particularly efficient in the case of a tilted driving field. The results presented here constitute a foundation for implementing fast nuclear spin control in various systems

    Coherent manipulation of nuclear spins in the strong driving regime

    No full text
    <p>Data for <a href="https://iopscience.iop.org/article/10.1088/1367-2630/ad0c0b">manuscript</a> with the same name. Consists of four parts:</p><p>(1) DC characterization: all files having a format corresponding to "20230129*.dat"</p><p>(2) Finite element analysis: all files having a format corresponding to "B_field_*.txt"</p><p>(3) Proton Rabi oscillations: all files having a format corresponding to "20230112*.dat", "20230119*.dat" and "20230120*.dat"</p><p>(4) Spiral transmission: a CSV file</p><p> </p&gt

    Room Temperature Relaxometry of Single Nitrogen Vacancy Centers in Proximity to α‑RuCl<sub>3</sub> Nanoflakes

    No full text
    Nitrogen vacancy (NV) center-based magnetometry has been proven to be a versatile sensor for various classes of magnetic materials in broad temperature and frequency ranges. Here, we use the longitudinal relaxation time T1 of single NV centers to investigate the spin dynamics of nanometer-thin flakes of α-RuCl3 at room temperature. We observe a significant reduction in the T1 in the presence of α-RuCl3 in the proximity of NVs, which we attribute to paramagnetic spin noise confined in the 2D hexagonal planes. Furthermore, the T1 time exhibits a monotonic increase with an applied magnetic field. We associate this trend with the alteration of the spin and charge noise in α-RuCl3 under an external magnetic field. These findings suggest that the influence of the spin dynamics of α-RuCl3 on the T1 of the NV center can be used to gain information about the material itself and the technique to be used on other 2D materials
    corecore