429 research outputs found

    Trade analysis of timber forest products between China and the United States

    Get PDF
    Forest products have become a significant part of internationally traded products. United States forestry has achieved sustainable development, with the improvement of forest management and logging systems more and more forest resources are able to be harvested. In addition to meeting their own domestic demands, the wood production of The United States also has a large surplus for export. This paper discusses the factors that influence the trade of timber forest products in China with the United States from two aspects of trade development pattern and trade friction. To look into this information sources such as forest products import and export trade between China and the United States in recent years, data for quantitative analysis, import and export commodity structure, the international market distribution, woody forest products of China import and export trade, and trade development and prospects were acquired. The results show that: The trade scale of China's wood forest products shows a dynamic growth trend, the import and export commodity structure is relatively concentrated, and the international market is mainly distributed in the United States, Japan and other developed economies. With the increasing diversification of timber forest product export markets, forestry enterprises should strengthen international production capacity and co-operation to deal with trade barriers, accelerate the transformation of the forestry industry, and implement fiscal and taxation policies to promote the sustainable development of the forest products trade

    Nifedipine promotes the proliferation and migration of breast cancer cells

    Get PDF
    Nifedipine is widely used as a calcium channel blocker (CCB) to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn’t exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3). Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3–Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers

    FoxO gene family evolution in vertebrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forkhead box, class O (FoxO) belongs to the large family of forkhead transcription factors that are characterized by a conserved forkhead box DNA-binding domain. To date, the FoxO group has four mammalian members: FoxO1, FoxO3a, FoxO4 and FoxO6, which are orthologs of DAF16, an insulin-responsive transcription factor involved in regulating longevity of worms and flies. The degree of homology between these four members is high, especially in the forkhead domain, which contains the DNA-binding interface. Yet, mouse FoxO knockouts have revealed that each FoxO gene has its unique role in the physiological process. Whether the functional divergences are primarily due to adaptive selection pressure or relaxed selective constraint remains an open question. As such, this study aims to address the evolutionary mode of FoxO, which may lead to the functional divergence.</p> <p>Results</p> <p>Sequence similarity searches have performed in genome and scaffold data to identify homologues of FoxO in vertebrates. Phylogenetic analysis was used to characterize the family evolutionary history by identifying two duplications early in vertebrate evolution. To determine the mode of evolution in vertebrates, we performed a rigorous statistical analysis with FoxO gene sequences, including relative rate ratio tests, branch-specific <it>d</it><sub><it>N</it></sub>/<it>d</it><sub><it>S </it></sub>ratio tests, site-specific <it>d</it><sub><it>N</it></sub>/<it>d</it><sub><it>S </it></sub>ratio tests, branch-site <it>d</it><sub><it>N</it></sub>/<it>d</it><sub><it>S </it></sub>ratio tests and clade level amino acid conservation/variation patterns analysis. Our results suggest that FoxO is constrained by strong purifying selection except four sites in FoxO6, which have undergone positive Darwinian selection. The functional divergence in this family is best explained by either relaxed purifying selection or positive selection.</p> <p>Conclusion</p> <p>We present a phylogeny describing the evolutionary history of the FoxO gene family and show that the genes have evolved through duplications followed by purifying selection except for four sites in FoxO6 fixed by positive selection lie mostly within the non-conserved optimal PKB motif in the C-terminal part. Relaxed selection may play important roles in the process of functional differentiation evolved through gene duplications as well.</p

    Modulation of Actin Filament Dynamics by Inward Rectifying of Potassium Channel Kir2.1

    Get PDF
    Apart from its ion channel properties, the Kir2.1 channel has been found in tumors and cancer cells to facilitate cancer cell motility. It is assumed that Kir2.1 might be associated with cell actin filament dynamics. With the help of structured illumination microscopy (SIM), we show that Kir2.1 overexpression promotes actin filament dynamics, cell invasion, and adhesion. Mutated Kir2.1 channels, with impaired membrane expression, present much weaker actin regulatory effects, which indicates that precise Kir2.1 membrane localization is key to its actin filament remolding effect. It is found that Kir2.1 membrane expression and anchoring are associated with PIP2 affinity, and PIP2 depletion inhibits actin filament dynamics. We also report that membrane-expressed Kir2.1 regulates redistribution and phosphorylation of FLNA (filamin A), which may be the mechanism underlying Kir2.1 and actin filament dynamics. In conclusion, Kir2.1 membrane localization regulates cell actin filaments, and not the ion channel properties. These data indicate that Kir2.1 may have additional cellular functions distinct from the regulation of excitability, which provides new insight into the study of channel proteins

    Clinical Efficacy and Meta-Analysis of Stem Cell Therapies for Patients with Brain Ischemia

    Get PDF
    Objective. Systematic review and meta-analysis to observe the efficacy and safety of stem cell transplantation therapy in patients with brain ischemia. Methods. We searched Cochrane Library, PubMed, Ovid, CBM, CNKI, WanFang, and VIP Data from its inception to December 2015, to collect randomized controlled trials (RCT) of stem cell transplantation for the ischemic stroke. Two authors independently screened the literature according to the inclusion and exclusion criteria, extracted data, and assessed the risk of bias. Thereafter, meta-analysis was performed. Results. Sixteen studies and eighteen independent treatments were included in the current meta-analysis. The results based upon the pooled mean difference from baseline to follow-up points showed that the stem cell transplantation group was superior to the control group with statistical significance in the neurologic deficits score (NIHSS, MD = 1.57; 95% CI, 0.64-2.51; I2 = 57 %; p = 0.001), motor function (FMA, MD = 4.23; 95% CI, 3.08-5.38; I2 = 0 %; p <0.00001), daily life ability (Barthel, MD = 8.37; 95% CI, 4.83-11.91; I2 = 63 %; p <0.00001), and functional independence (FIM, MD = 8.89; 95% CI, 4.70-13.08; I2 = 79 %; p <0.0001). Conclusions. It is suggested that the stem cell transplantation therapy for patients with brain ischemic stroke can significantly improve the neurological deficits and daily life quality, with no serious adverse events. However, higher quality and larger data studies are required for further investigation to support clinical application of stem cell transplantation

    Multi-Objective Considered Process Parameter Optimization of Welding Robots Based on Small Sample Size Dataset

    Get PDF
    The welding process is characterized by its high energy density, making it imperative to optimize the energy consumption of welding robots without compromising the quality and efficiency of the welding process for their sustainable development. The above evaluation objectives in a particular welding situation are mostly influenced by the welding process parameters. Although numerical analysis and simulation methods have demonstrated their viability in optimizing process parameters, there are still limitations in terms of modeling accuracy and efficiency. This paper presented a framework for optimizing process parameters of welding robots in industry settings, where data augmentation was applied to expand sample size, auto machine learning theory was incorporated to quantify reflections from process parameters to evaluation objectives, and the enhanced non-dominated sorting algorithm was employed to identify an optimal solution by balancing these objectives. Additionally, an experiment using Q235 as welding plates was designed and conducted on a welding platform, and the findings indicated that the prediction accuracy on different objectives obtained by the enlarged dataset through ensembled models all exceeded 95%. It is proven that the proposed methods enabled the efficient and optimal determination of parameter instructions for welding scenarios and exhibited superior performance compared with other optimization methods in terms of model correctness, modeling efficiency, and method applicability

    ReCGiP, a database of reproduction candidate genes in pigs based on bibliomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reproduction in pigs is one of the most economically important traits. To improve the reproductive performances, numerous studies have focused on the identification of candidate genes. However, it is hard for one to read all literatures thoroughly to get information. So we have developed a database providing candidate genes for reproductive researches in pig by mining and processing existing biological literatures in human and pigs, named as ReCGiP.</p> <p>Description</p> <p>Based on text-mining and comparative genomics, ReCGiP presents diverse information of reproduction-relevant genes in human and pig. The genes were sorted by the degree of relevance with the reproduction topics and were visualized in a gene's co-occurrence network where two genes were connected if they were co-cited in a PubMed abstract. The 'hub' genes which had more 'neighbors' were thought to be have more important functions and could be identified by the user in their web browser. In addition, ReCGiP provided integrated GO annotation, OMIM and biological pathway information collected from the Internet. Both pig and human gene information can be found in the database, which is now available.</p> <p>Conclusions</p> <p>ReCGiP is a unique database providing information on reproduction related genes for pig. It can be used in the area of the molecular genetics, the genetic linkage map, and the breeding of the pig and other livestock. Moreover, it can be used as a reference for human reproduction research.</p

    Reliability enhancement of state of health assessment model of lithium-ion battery considering the uncertainty with quantile distribution of deep features

    Get PDF
    Lithium-ion batteries (LIBs) are widely used in many fields, such as electric vehicles and energy storage, and directly impact the device performance and safety. Therefore, the state of health (SOH) assessment is critical for LIB usage. However, most of the existing data-driven SOH modeling methods overlook the inherent uncertainty in battery health prediction, which decreases the reliability of the model. To address this issue, this paper proposes a novel SOH assessment model based on the deep learning framework. The SOH results are derived from the quantile distribution of deep features, giving the SOH values with associated confidence intervals. This enhances the reliability and generalization of SOH assessment results. Additionally, to complete the optimization of the deep model, a Wasserstein distance-based quantile Huber (QH) loss function is developed. This function integrates Huber loss and quantile regression loss, enabling the model to be optimized based on a distribution output. The proposed method is validated using the NASA dataset, and the results confirm that the proposed method can effectively estimate the SOH of LIB while accounting for uncertainty. The incorporation of SOH distribution enhances the reliability and generalization ability of the SOH assessment model

    CFTR Deficiency Affects Glucose Homeostasis via Regulating GLUT4 Plasma Membrane Transportation

    Get PDF
    Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CF-related diabetes (CFRD) is one of the most prevalent comorbidities of CF. Altered glucose homeostasis has been reported in CF patients. The mechanism has not been fully elucidated. Besides the consequence of pancreatic endocrine dysfunction, we focus on insulin-responsive tissues and glucose transportation to explain glucose homeostasis alteration in CFRD. Herein, we found that CFTR knockout mice exhibited insulin resistance and glucose tolerance. Furthermore, we demonstrated insulin-induced glucose transporter 4 (GLUT4) translocation to the cell membrane was abnormal in the CFTR knockout mice muscle fibers, suggesting that defective intracellular GLUT4 transportation may be the cause of impaired insulin responses and glucose homeostasis. We further demonstrated that PI(4,5)P2 could rescue CFTR related defective intracellular GLUT4 transportation, and CFTR could regulate PI(4,5)P2 cellular level through PIP5KA, suggesting PI(4,5)P2 is a down-stream signal of CFTR. Our results revealed a new signal mechanism of CFTR in GLUT4 translocation regulation, which helps explain glucose homeostasis alteration in CF patients
    corecore