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Abstract: The welding process is characterized by its high energy density, making it imperative to
optimize the energy consumption of welding robots without compromising the quality and efficiency
of the welding process for their sustainable development. The above evaluation objectives in a
particular welding situation are mostly influenced by the welding process parameters. Although
numerical analysis and simulation methods have demonstrated their viability in optimizing process
parameters, there are still limitations in terms of modeling accuracy and efficiency. This paper
presented a framework for optimizing process parameters of welding robots in industry settings,
where data augmentation was applied to expand sample size, auto machine learning theory was in-
corporated to quantify reflections from process parameters to evaluation objectives, and the enhanced
non-dominated sorting algorithm was employed to identify an optimal solution by balancing these
objectives. Additionally, an experiment using Q235 as welding plates was designed and conducted
on a welding platform, and the findings indicated that the prediction accuracy on different objectives
obtained by the enlarged dataset through ensembled models all exceeded 95%. It is proven that the
proposed methods enabled the efficient and optimal determination of parameter instructions for
welding scenarios and exhibited superior performance compared with other optimization methods
in terms of model correctness, modeling efficiency, and method applicability.

Keywords: welding robots; process parameter optimization; multiple objectives; small sample size
dataset; auto machine learning

1. Introduction

Over the course of several decades, industrial robots have increasingly become integral
to contemporary industry, as they are capable of fulfilling the demands for individualized,
customized, and small batch production [1,2]. With the wild application of industrial
robots, the research focus on them has shifted to their optimal operations, aiming at
the enhancement of sustainable, skilled, and efficient functioning. Welding is a widely
employed material joining technology in various industries, such as vehicles, construction
machinery, and shipbuilding [3,4]. It involves the heating and fusing of basic materials,
making it a prominent manufacturing process. According to the statistics provided by the
International Federation of Robotics [5], welding robots (WRs) are ranked second globally
with an 18.4% market share, just falling behind handling robots in terms of installation
quantity. This can be attributed to the strong reliability and maneuverability of WRs, which
enable them to outperform hand-worked specialty in terms of precision and consistency.
Additionally, WRs offer the advantage of protecting workers from exposure to dirty and
hazardous environments [6,7]. Nevertheless, it is important to note that the welding process
is characterized by its high energy density [8], and the widespread utilization of WRs has
significant environmental implications. Hence, it is imperative to enhance the energy
efficiency of WRs without compromising product quality or productivity. This is crucial for
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reducing the carbon footprint of production and ensuring the sustainable development of
industry. Such efforts align with the technological trends of industrial robots [5,9] and also
bolster their overall operating capabilities and facilitate their intelligent evolution in the
era of Industry 4.0.

Research on the operating optimization of WRs can be categorized into two categories:
the act of introducing novel equipment or processes and modifying current operating
parameters. In the first category, academics have employed vision sensors to address
the issue of limited adaptability resulting from the teach and playback working style of
WRs. These vision sensors are utilized for tasks such as seam tracking and weld pool
inspection [10,11]. New components in welding machines are also redesigned, like the
vacuum chamber proposed by Yue et al. [12] to reduce deformation in the welding process.
Additionally, a novel technique known as electrically-aided preheating has been suggested
in the context of hot-wire laser welding [13]. This approach aims to enhance both the
stability of the welding procedure and its energy efficiency simultaneously. However,
expenses and potential hazards significantly increase when changing existing equipment
or processes in industry since extensive testing and validation are needed to ensure their
stability and efficacy.

The optimization of operating parameters represents a highly effective approach for
enhancing the performance of existing WRs. This solution focuses on refining parameters
that have been tailored by human administrators by using intelligent techniques. For a
single welding motion, it is seen that process parameters (PP), encompassing both the
parameters in manipulator commands and those in welding tools, dominate physical and
chemical changes during the welding process and determine the product quality, energy
costs, and operating efficiency of WR. In the field of PP optimization, there are often two
primary components: the assessment and selection of PP solutions.

The assessment of PP solutions entails the establishment of models that quantify
the influence of PP on objectives, where processing mechanisms, simulation, analysis
of experimental data, and other related methodologies are employed. In terms of the
evaluation models based on welding mechanisms and numerical simulation, Ahmad
et al. [14] predicted the weld-induced strains on the substrate by the finite element method,
in which geometrical modeling and the inherent strain theory were used. Lu et al. [15]
modeled the heat consumption to describe the influence of weaving parameters on the weld
hear input, through which a velocity-adaptive control parameter generation strategy was
proposed to improve the quality of multi-pass welding. A heat-source model was proposed
in [16] for the Gaussian-distributed rotating body according to the shape parameters of
welds and the welding heat-affected zone. Then, a numerical simulation of the welding
temperature field was used to depict the correlation between thermal cycling and the
microstructure of the welded joint. Additionally, Ribeiro et al. [17] performed numerical
simulations in which process welding current (WC), welding speed (WS), and torch angle
were involved to determine the optimal combination of PP for aluminum alloys with
distortion and residual stresses considered. Li et al. [18] established a thermal-fluid coupling
model to simulate the temperature field and flow field in laser and melt inert-gas hybrid
welding processes, and PP such as laser power, WC, and filling speed were involved
in experiments of molten pool analysis. Commercial simulation software like Simufact
was used to simulate the welding process, and the surface quality of the weldment was
compared and analyzed to settle the welding PP, including WC, welding voltage (WV),
and WS [19]. The utilization of numerical analysis and simulation methods relies heavily
on intricate modeling, making it challenging to promptly rectify any distinctions due to
alterations in modeling objects, such as welding processes or base materials. Moreover, the
performance of a particular PP in different settings exhibits inconsistency as a result of the
variability in equipment stability and environmental factors.

Hence, certain researchers prioritized the experimental analysis as a means to value
the PP from the perspective of processing results. Tyagi et al. [20] used a grey correlation
analysis method to optimize robot spot welding PP based on orthogonal experiments,
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where the electrode diameter, electrode pressure, WC, and welding time were optimized
with the heat-affected zone and tensile shear strength of the steel plate as objectives for
welding quality evaluation. Srivastava et al. [21] established a mathematical model through
the response surface method to determine how PP, like WC, and the type of shielding gas
affect the geometric dimensions of welds. Ali et al. [22] conducted an experimental study
on the influence of PP, including WV, WC, WS, and wire feed speed, on the strength and
hardness of welded steel using the variance analysis method. An ensemble of variable
neighborhood search-based gene expression programming and black-box metamodels is
presented by Wu et al. [23] to ensure the reflection from welding PP to welding quality
and energy consumption. Additionally, some machine learning (ML) methods like radial
basis function, artificial neural network, and CatBoost [24,25] are applied to construct
models between PP and responses based on the experiment data. The experiment-driven,
data-driven modeling method exhibits more applicability in comparison to numerical
approaches. However, the practical implementation of experiment-based methods still has
some drawbacks, as follows:

• The establishment of a high-accuracy model requires a substantial quantity of sam-
ples. The effectiveness of machine learning models typically hinges on the quality
and quantity of the training data provided. The ample fitting of models necessitates
the availability of adequate experimental data. Additionally, these models may not
perform optimally when confronted with process scenarios that lie outside the scope
of the dataset. Nevertheless, it is imperative to take the costs associated with mate-
rials, labor, and time into account when generating datasets in an industrial setting.
These requirements often result in a dearth of the essential prerequisites for sampling
extensive datasets in welding scenarios.

• Selecting and tuning machine learning models necessitates manual expertise. The
optimization of PP in the context of WRs is oriented towards several objectives. It is
challenging to describe the coupling reflection from PP to these responses depending
on a single model. Therefore, many models are required to be trained in this process.
Meanwhile, typical hyperparameters of ML models involve network structure, loss
function, learning rate, etc., whose modifications need to be made according to the
model’s performance. Hence, the cost is significantly higher for the manual selection
and parameter tweaking of several models.

To solve these problems, the PP evaluation method, which combines data augmenta-
tion and auto-machine learning (AutoML), is investigated in this project. Data augmenta-
tion aims to enlarge the dataset for a more rational sample distribution by algorithms or
models [26,27], rather than increasing experiments. The AutoML method is deployed to
achieve autonomous combination of models and selection of hyperparameters [28] through
intelligent algorithms. With more input data and self-adaptive model generation, the
proposed solution is capable of improving both the modeling accuracy and efficiency for
welding scenarios featuring a small sample size dataset and multiple objectives.

As for the selection of the PP solution, it aims to find the optimal result using the
established evaluation models with multiple objectives considered. Yao et al. [29] obtained
the optimal parameter combinations through the range analysis of results from the orthog-
onal experiment. Kim et al. [30] applied the sequential quadratic programming method
to determine the optimal welding condition with consideration of penetration and bead
shape. It has been proven that heuristic search algorithms such as genetic algorithms
and particle swarm optimization are feasible and efficient ways to find optimal results for
neural networks and machine learning models [31–34]. Therefore, heuristic algorithms are
selected in this paper as the PP optimization method to trade off among multiple objectives
that are quantified based on the AutoML method.

The rest of this paper is organized as follows: Section 2 discusses the flow of the
investigated data-driven optimization method for PP of WRs; Section 3 builds a platform
and conducts experiments performed by a Siasun welding robot on Q235 steel; Section 4
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demonstrates the validity and effectiveness of the proposed solution through detailed result
analysis; and Section 5 draws conclusions and gives future directions for improvement.

2. Methodology

Steps of investigated PP optimization for WRs are shown in Figure 1. Firstly, a detailed
analysis has to be conducted on the welding scenarios and the operation process of WRs to
ensure welding types such as arc and spot welding, welding materials such as aluminum
alloy and Q235 steel, welding equipment, and the welding operating environment. Then
the studied objects are determined, including welding parameters and corresponding
evaluation objectives, with production requirement considered. Secondly, features of
data during the welding process are supposed to be studied, paving the way for data
acquisition system construction and data sampling. In this system, synchronous collections
of sequential and discrete data are achieved by reading from the WR system and deployed
sensors like power flow and images.
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Next, the acquired data are preprocessed to formulate the sample set for this case.
Target labels are generated for each PP combination through treatments such as data
cleaning and sequential data segmentation. For example, integrating the power flow in
the time dimension is able to obtain the EC value of WR under each PP scenario. In
addition, in response to the small volume of datasets for WRs, this research adopts the data
augmentation method, which is frequently utilized in the field of few-lot learning, to expand
the sample set for industrial cases. Data augmentation methods in the field of machine
vision include algorithm-based generation such as data flipping, image scaling, etc., and
model-based generation like GAN [35–37]. However, unlike images, the reflection from
PP to responses of the welding process contains clear physical and chemical changes, and
the generated data needs to undergo detailed discrimination to examine its effectiveness
in industrial scenes. Therefore, considering the fluctuation of welding PP set at once
during the actual welding process, this article expands the sample by adding noise to PP.
Furthermore, standardization and normalization of the designed parameters and acquired
evaluation objectives are performed to create the final dataset.

Then, ML models are applied to construct the welding process evaluation models
and quantify the relations between PP and the chosen objectives. The common process
of ML modeling for regression or classification problems includes three parts: feature
engineering, model selection, and parameter optimization, where all parts require human
participation to assist in decision-making. AutoML attempts to replace the role of expert
experience in model construction through a series of methods with limited computational
costs. The model construction by AutoML is able to be described as a typical optimization
problem [38–40]. The goal of the optimization problem is to improve the model’s perfor-
mance on given tasks. Its constraints include automatic configuration of the modeling
process and limited computational resource requirements, and objects are the selected mod-
els and their corresponding hyperparameters. Most AutoML frameworks are formatted
around the selection of optimization algorithms, the design of model performance valu-
ation, the initialization of models or parameters, and convergence acceleration methods,
corresponding to the optimizing methods, objective functions, and operators in terms of
optimization problems, as shown in Figure 2. Autosklearn, as one of the mainstream Au-
toML open-source frameworks [41], proposes a solution innovating in model initialization
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and model generation. Relying on Bayesian model-based optimization methods and nu-
merous regression/classification algorithms, data preprocessing, and feature engineering
algorithms in the Sklearn ML library, Autosklearn has superior performance in model
fitting accuracy and efficiency. Therefore, this research chooses Autosklearn as the basis for
constructing a multi-objective considered evaluation for the PP of WRs.
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Finally, ideal PP are found using constructed evaluation criteria and heuristic algo-
rithms to trade off among multiple objectives. Multi-objective optimization problems can be
defined as obtaining a set of solutions where the optimized variables, X = [x1, x2, . . . , xi, . . . , xn],
satisfy various constraints such as upper and lower bounds, equations, inequalities, etc. in the
search space Ω, and the corresponding value of all objectives is the minimum or maximum.
In these problems, the superiority of solutions X1 and X2 are judged by comparing their
fitness values under each objective. If all fitness values of the solution X1 is not worse
than X2, and there is at least one target better than the value of X2, it is considered that X1 is
Pareto dominant compared with X2. Therefore, the non-dominated sorting of variables has
become one of the keys to solve multi-objective optimization problems. The non-dominated
sorting genetic algorithm (NSGA) is based on the basic genetic algorithm, which advances
the population selection and regeneration methods. The evolution of each generation in
NSGA needs to construct a non-dominated set, which has high computational complexity.
NSGA-II proposes a non-dominated fast sorting way for population classification and
adopts a crowding degree and elite retention strategy to improve the search efficiency
of the optimized solution set, becoming a classic algorithm for solving multi-objective
optimization problems. The overall flow of NSGA-II is shown in Figure 3.
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3. Experiments
3.1. Experimental Platform and Data Acquisition System

Q235 steel, a common material in welding, is wildly utilized in the structures of bridges
and ships. Butt welding with Q235 medium-thick plates are selected in this research to
investigate the influence of PP on the welding quality and other factors. The material size is
200 mm × 50 mm × 5 mm, and the weld length is 200 mm. The welding schematic diagram
is shown in Figure 4a. Additionally, to prevent material deformation from affecting the
welding responses, both ends on the back of the welding plate are fixed in advance, as
shown in Figure 4b.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 17 
 

 
Figure 3. Flowchart of NSGA-II. 

3. Experiments 
3.1. Experimental Platform and Data Acquisition System 

Q235 steel, a common material in welding, is wildly utilized in the structures of bridges 
and ships. Butt welding with Q235 medium-thick plates are selected in this research to in-
vestigate the influence of PP on the welding quality and other factors. The material size is 
200 mm × 50 mm × 5 mm, and the weld length is 200 mm. The welding schematic diagram 
is shown in Figure 4a. Additionally, to prevent material deformation from affecting the 
welding responses, both ends on the back of the welding plate are fixed in advance, as 
shown in Figure 4b.  

 
(a) (b) 

Figure 4. (a) Schematic diagram of size of welding plates and weldment, and (b) preparation of 
welding plates. 

The carbon dioxide arc welding robot system is selected for the experiment and is 
composed of a Sansun SR10C robot, a Magmet Artsen Plus welding machine, and a weld-
ing gun. The diameter of welding wire is 1.2 mm, and its material meets the standard of 
the GB/T 8110-2008 of China. The welding plates are locked by a fixture, and the overall 
welding experiment arrangement is shown in Figure 5. Welding quality, energy consump-
tion, and efficiency are selected in this research for the comprehensive operation ability 
evaluation of robots. Welding quality evaluation at industrial sites is mainly carried out 
through visual inspection of the surface defects of the welds. In order to provide a numer-
ical welding quality evaluation, welding plates are cut into four parts by wire electrical 
discharge machining, and then the width and depth of welding seams are measured in 

Figure 4. (a) Schematic diagram of size of welding plates and weldment, and (b) preparation of
welding plates.

The carbon dioxide arc welding robot system is selected for the experiment and
is composed of a Sansun SR10C robot, a Magmet Artsen Plus welding machine, and
a welding gun. The diameter of welding wire is 1.2 mm, and its material meets the
standard of the GB/T 8110-2008 of China. The welding plates are locked by a fixture,
and the overall welding experiment arrangement is shown in Figure 5. Welding quality,
energy consumption, and efficiency are selected in this research for the comprehensive
operation ability evaluation of robots. Welding quality evaluation at industrial sites is
mainly carried out through visual inspection of the surface defects of the welds. In order
to provide a numerical welding quality evaluation, welding plates are cut into four parts
by wire electrical discharge machining, and then the width and depth of welding seams
are measured in this research. Figure 5c,d shows the cutting schemes and the geometric
dimension measurement tool, a microscope OLYMPUS SXZ12. Meanwhile, for a more
accurate assessment of welding ability, the depth-to-width ratio (DWR) is selected as
an indicator of welding quality. Generally, the larger the value of DWR, the better the
welding quality.

The energy consumption of the welding process is calculated by integrating welding
power over time. By installing current and voltage sensors near the main switch, shown
in Figure 5e, the total power of the welding system is measured using the oscillograph
recorder (YOKOGAWA DL350 with a sample frequency of 1KHz). The perceptual power
flow of the complete welding process is shown in Figure 5f, which includes stages, such as
standby, approaching the welding plate, welding, and moving away. It is also illustrated
that the welding time can be sorted out as an efficiency indicator through this profile.

3.2. Design of Experiments and Data Preprocessing

In the above-settled welding system, the total adjustable welding PP includes welding
current, welding voltage (WV), welding speed, length of welding wire (LW), weld direction
angle (WA), and shielding gas flow (GF). To ensure the various impacts of these parameters
on the preferred objectives, the welding experiment is designed in a Taguchi pattern, and the
L27(36) matrix is selected with six factors and three levels considering the implementation
cost. Ranges of each parameter are recommended by welding equipment and related
welding manuals, as shown in Table 1.
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Figure 5. (a) Welding robot system of experiment platform; (b) fixture for welding plates in the
platform; (c) schematic diagrams of cutting positions for welding plates and measurement of welding
seams; (d) the microscope, OLYMPUS SXZ12, for measurement of welding seams; (e) the oscillograph
recorder, YOKOGAWA DL350, and the power flow measurement scheme; and (f) power flow of the
WR system for welding process.

Table 1. PP in the experiment and their levels.

Levels WC (A) WV (V) GF (L/min) WS (mm/s) LW (mm) WA (◦)

1 120 16 16 7 10 60
2 180 20 19 9 15 90
3 240 24 22 11 20 120

During the experiment, the WC and WV are input into the welding machine. The
LW is adjusted by the wire feeding mechanism of the welding gun, and the GF is fixed by
the valve on the gas cylinder. The WS and WA are set by the teaching device of the robot,
where the value of the WA is 60◦, meaning welding in the pull direction and 120◦ in the
push direction. The images of the welded plate are shown in Figure 6. It can be illustrated
that under different PP, the weld profile varies and the smoothness of the welding seam
fluctuates, which indicates the parameter combination ruled by the orthogonal experiment
basically covers the shifts of targets and can be used for subsequent research on welding
process modeling.
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After the experiments, the average DWR of three cross sections for each welding plate
is calculated to evaluate the welding quality. The welding EC under the corresponding
scenarios is computed by power curves, and at the same time, time intervals between the
starting and ending arcing moments are recorded as the welding time, T. The PP scenarios
and corresponding values of objectives are shown in Table 2.
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Table 2. PP and results for experiments of L27(36).

Case No. WC (A) WV (V) GF (L/min) WS (mm/s) LW (mm) WA (◦) DWR EC (kJ) T (s)

1 120 16 16 7 10 60 0.236 70.85 27.68
2 180 20 16 9 10 90 0.256 102.14 21.86
3 240 24 16 11 10 120 0.410 132.39 17.94
4 120 20 19 11 10 90 0.254 54.83 18.06
5 180 24 19 7 10 120 0.216 154 28.08
6 240 16 19 9 10 60 0.341 102.66 21.88
7 120 24 22 9 10 120 0.206 77.25 21.88
8 180 16 22 11 10 60 0.324 72.53 18.02
9 240 20 22 7 10 90 0.304 175.07 28.00

10 120 24 22 11 15 60 0.168 62.35 18.04
11 180 16 22 7 15 90 0.216 82.24 28.04
12 240 20 22 9 15 120 0.303 127.26 21.78
13 120 20 19 7 15 120 0.204 83.39 27.90
14 180 24 19 9 15 60 0.177 116.95 21.90
15 240 16 19 11 15 90 0.397 75.67 18.04
16 120 16 16 9 15 90 0.414 54.67 21.68
17 180 20 16 11 15 120 0.317 77.75 17.90
18 240 24 16 7 15 60 0.222 192.15 27.96
19 120 16 16 11 20 120 0.302 42.47 18.06
20 180 20 16 7 20 60 0.210 120.62 27.96
21 240 24 16 9 20 90 0.248 142.47 21.92
22 120 20 19 9 20 60 0.206 61.95 21.64
23 180 24 19 11 20 90 0.332 90.06 17.98
24 240 16 19 7 20 120 0.218 110.24 28.08
25 120 24 22 7 20 90 0.157 93.52 27.94
26 180 16 22 9 20 120 0.285 77.76 21.84
27 240 20 22 11 20 60 0.206 100.18 17.84

4. Method Implementation and Result Analysis
4.1. Multi-Objective Oriented Modeling for PP Evaluation

The above 27 samples are divided into training and testing sets in a ratio of 8.5:1.5, and
Autosklearn with a version of 0.15.0 is applied to fit models and quantify the relationships
between welding PP and selected objectives, respectively. After convergence of models, the
average absolute error of the total sample set (denoted as MAEtotal), the average absolute
error of the testing set (denoted as MAEtest), the average absolute percentage error of
the training set (denoted as MAPEtrain), and the average absolute percentage error of the
testing set (MAPEtest) are computed for the evaluation of model capability. The coefficient
of determination, also known as R2, for single best models on the training set (denoted as
Ssingle_tr), single best models on the validation set (denoted as Ssingle_val), and ensembled
models on the validation set (denoted as Sensem_val), is adopted as the metric for the analysis
of iterations.

Figure 7a shows the value of R2 during the modeling process with the dataset in
Table 2 on the quality objective, DWR, and Figure 7b gives the scatter plot for measured
value (MV) and predicted value (PV) by the trained ensembled model. It is shown that
though the ensembled model performs better than the single model in predicting values of
DWR by comparing Sensem_val with Ssingle_val, the final model has not gotten good teaching
since the prediction accuracy in the validation set is much lower than that in the training
set, as proven by the curves of Ssingle_val and Ssingle_tr. As seen in the scatter plot, many
prediction points deviate significantly from the baseline. Though MAE values are not large,
MAPE values for training and testing sets are 13.19% and 9.82%, which are worse than
these in [21], confirming the poor performance of the ensembled model. Combined with
the R2 and indicators in Table 3, it indicates that the trained model is underfitting and the
sample size for DWR modeling is too small to get high accuracy.
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Table 3. Performance results of the ensembled model for DWR.

Objective MAEtotal MAEtest MAPEtrain (%) MAPEtest (%)

DWR 0.0334 0.0262 13.19 9.82

To improve the accuracy of the regression model, the data augmentation strategies for
the dataset of DWR in Table 2 are proposed in this research. In fact, welding actions are
sequential, in which process values of PP are not constants and are influenced by materials,
the operation stability of equipment, and so on. Therefore, this article introduces Gaussian
noise into the PP. Based on factors such as the positioning error of the robot (SR10C with
an absolute positioning error of ±0.44 mm) and the measured power fluctuations during
the welding process shown in Figure 5f, a disturbance range of 5% is determined for these
input parameters. Fusing the original 81 cut welding plates with the dataset in Table 2, an
enlarged dataset with a total of 108 samples involved is formed and utilized to establish
the welding quality evaluation model.

The modeling process and results fitting the above-enlarged dataset are shown in
Figure 8. It can be illustrated that the performance and prediction accuracy of the new
ensembled model are much higher than those generated on the original dataset. Sensem_val
and Ssingle_val show that both the single model and the ensembled model have gained good
scores in DWR prediction, and most points are near the baseline compared with results
obtained by the unexpanded dataset. Table 4 lists the MAPE of training and testing samples
in the original dataset, 2.41% and 5.70%, respectively, which are better than results in
other papers [23]. It demonstrates that the proposed modeling method has high prediction
accuracy and is capable of obtaining accurate welding quality indicator values using a
small sample dataset. In addition, the component models and corresponding weights
of the ensembled model are shown in Table 5, where the Extreme Randomized Trees
(ExtRa Trees) model has the highest proportion of 0.76, the Stochastic Gradient Descent
(SGD) receives a proportion of 0.20, and the Gradient Boosting algorithm is assigned a
proportion of 0.04. The above algorithms are combined to form the final model for its
accuracy improvement and generalization performance. Since the determination of models
and their hyperparameters is autonomous, the efficiency of AutoML is also confirmed.

The modeling process of energy cost indicators for welding robots is the same as DWR.
From a theoretical perspective, the number of PP that affect the EC is relatively smaller
compared with the DWR, for example, parameter GF. Therefore, the complexity of model
fitting will be reduced. The experimental dataset and EC labels in Table 2 are utilized, and
the iterative curves with a prediction diagram shown in Figure 9 are obtained. Sensem_val
shows that the ensembled model has an excellent score in EC prediction, and the score is
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even better than these for Ssingle_val and Ssingle_tr. Based on the scatter points and MAPE
indicators in Table 4, it is seen that the EC model has been fully trained and achieved a
prediction accuracy of 2.55%, better than these in [42]. The ensembled model for EC mainly
includes two sub-models: SGD and Gaussian Process Regression.
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Table 4. Performance results of ensembled models on enlarged datasets.

No. Objective MAEtotal MAEtest MAPEtrain (%) MAPEtest (%)

1 DWR 0.0081 0.0149 2.41 5.70

2 EC 4.2390 2.2283 2.55 4.78

3 T 0.0721 0.1212 0.28 0.57

Table 5. Sub-models and weights for ensembled models.

No. Objective Sub-Module No. Sub-Model Weight

1 DWR
1 ExtRa Trees 0.76
2 SGD 0.20
3 Gradient Boosting 0.04

2 EC
1 SGD 0.98
2 Guassian Process 0.02

3 T
1 Guassian Process 0.70
2 ExtRa Trees 0.28
3 Gradient Boosting 0.02

As for welding efficiency, due to the fixed length of weld seam, only the WS set through
the robot influences the welding time, T, and there is a simple linear relationship. Fitting
a single-factor regression model using only three levels will inevitably cause overfitting.
Therefore, a linear model is a choice to describe the relationship between WS and T, or
the original sets are up to be expanded by randomly generating 81 sets of experimental
data within the range of 7 mm/s~11 mm/s for WS. Then, the proposed method is applied,
and the iteration curves and prediction diagram are obtained, as shown in Figure 10. It
is illustrated that R2 for each model is nearly 1, and all points in the original dataset are
well located. The curves and MAPE indicators in Table 4 show that the model for T is well
trained by the enlarged dataset, and the corresponding sub-models are listed in Table 5.
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4.2. Multi-Objective Considered PP Optimization

The ensembled models in Table 5 are established to describe the complicated relation-
ships between the PP and objectives, after which the optimization problem takes shape and
can be described in the form as follows:

min − DWR(X)
min EC(X)
min T(X)

(1)

s.t.
X = [x1, x2, x3, x4, x5, x6] (2)

xL
i ≤ xi ≤ xU

i , i = 1, 2, . . . , 6 (3)

XU =
[

xU
1 , xU

2 , xU
3 , xU

4 , xU
5 , xU

6

]
= [240, 24, 22, 11, 20, 120] (4)

XL =
[

xL
1 , xL

2 , xL
3 , xL

4 , xL
5 , xL

6

]
= [160, 16, 16, 7, 10, 60] (5)

where i is the index of PP and xi, xL
i , and xU

i are PP variables and their lower and
upper bounds.
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Then, the NSGA-II is practiced to solve the above optimization problem and obtain the
optimal combination of PP with a tradeoff of the three objectives. The detailed parameters
of NSGA-II are shown in Table 6. Individuals with a non-dominant order of 1 in the final
population are selected as the optimal solutions for PP. To determine the convergence
of the algorithm, the Running Metric Index [43] is selected in this research to evaluate
the difference in objective spaces during the iteration process, and the reverse generation
distance is calculated through the convergence index and separation index, which are
shown in Figure 11. The non-dominated solution set tends to stabilize after 120 generations,
indicating that the Paretro front has been obtained within the population. The optimal
solutions compared with the experimental dataset in the DWR, EC, and T target spaces
are shown in Figure 12. It is not hard to figure out that the improvement of DWR often
accompanies the increase of EC. Through the subtle adjustment of PP, it is possible to obtain
the optimized DWR and EC levels that meet industrial requirements at a reasonable cost.

Table 6. Parameters of NSGA-II.

No. Parameters MAEtotal No. MAPEtrain (%) MAPEtest (%)

1 Population size 300 4 Crossover rate 0.6
2 Elite count 100 5 Mutation rate 0.2
3 Max iterations 150 6 Stop criteria 1 × 10−3
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4.3. Result Analysis

The permutation feature importance, which measures the increase in prediction error
of the established model after permuting the values of input, is calculated in our research
to analyze the weights of the impact of each PP on the evaluation targets, as shown in
Figure 13. For the welding quality, it indicates that the WS, WV, and WC gain maximum
weights, while the influence caused by the GF, LW, and WA is relatively small. For welding
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EC, the results illustrate that the effects of GF and push or pull welding methods on EC
are able to be ignored, and the energy cost is mainly decided by the WC, WV, and WS. In
addition, for the welding efficiency, the permutation importance of each PP clarifies that it is
only affected by the WS, which is consistent with the model-establishing process designed
in this research. The feature importance acquired from the proposed method is unanimous
with the theoretical analysis, which proves the key role of the data augmentation and
AutoML methods in solving the multi-objective modeling problem for a small sample size
dataset for model accuracy and generalization ability improvements.
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Additionally, three solutions on the Pareto front are picked and performed practically
for verification, as shown in Table 7. The main comparison is made on the DWR level
under different WS and the impact of WC on EC. Using the obtained parameters, three
scenarios are carried out on the same welding experimental platform. Welding plates
and data in the welding process were handled, and then the PV and MV of the welding
quality, the energy consumption, and the time cost were obtained, as shown in Table 7 and
Figure 14. It is indicated that the average error of DWR prediction is 4.60%, the average
error of EC prediction is 3.97%, and the average error of T prediction is 1.03%. It is verified
that the AutoML method and the data augmentation strategy are capable of accurately
quantifying the relationship between PP and indicators, and the NSGA-II is feasible in
finding sustainable and reasonable welding PP for industrial practice.

Table 7. Selected optimal welding PP combinations and their responses.

Case
No.

WC
(A)

WV
(V)

GF
(L/min)

WS
(mm/s)

LW
(mm) WA (◦)

DWR EC (kJ) T (s)

PV MV PV MV PV MV

1 201 16.5 11 15.7 19.0 89.3 0.40 0.38 83.73 89.00 18.10 18.04
2 120 16.0 11 20.1 17.5 111 0.3 0.31 55.80 57.11 18.10 17.96
3 165 16.2 9.8 16.2 16.6 86.7 0.38 0.36 65.71 68.24 20.2 19.8
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5. Conclusions and Future Research

PP optimization is crucial in order to improve the environmental friendliness and
sustainability of WRs. This work introduces novel strategies for obtaining optimal PP
combinations by focusing on experimental data analysis. The quantification of the associa-
tions between PP and targets has been achieved by the augmentation of the sample and
the utilization of AutoML models. Then, the NSGA-II is utilized to identify the Pareto
front, enabling a trade-off between welding quality, energy consumption, and time cost.
Experiments are conducted on Q235 welding plates and the welding platform built by a
Siasun SR10 industrial robot and a Magmeet welding machine for verification. It is seen
that the model accuracy for welding quality prediction has been dramatically enhanced
by using the enlarged dataset. It is proven that the ensembled models obtained by the
AutoML method perform better than single ones. The efficacy of the proposed method is
convincingly demonstrated by the best solutions and the less than 5% error between the
verified and predicted results.

In conclusion, compared with the other PP optimization methods for WRs, the data
augmentation and AutoML-based modeling methods achieved satisfying results in terms of
modeling accuracy and efficiency. Without requiring a large number of samples and human-
dominated parameter adjusting in machine learning, it can be considered an important
step toward the intelligent and sustainable operation of WRs.

The study was carried out only taking the geometry feature of welding quality into
account. Subsequent investigations might expand upon the existing indicators, such as
tensile strength, hardness, and the examination of weld seam microstructure, in order
to achieve a more thorough and comprehensive study. In addition, the experiment is
carried out in the pattern of butt welding. Furthermore, there are still many intricate PPs
for welding, like the swing frequency of the arc, that need to be investigated. Moreover,
considering the potential benefits of ML modeling, it is imperative to explore zero- or
few-shot learning techniques in order to leverage existing information and well-trained
models for enhanced accuracy and efficiency in modeling diverse welding scenarios.
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