47 research outputs found
Comparison of outcomes between immediate implant-based and autologous reconstruction: 15-year, single-center experience in a propensity score-matched Chinese cohort
Objective: The number of immediate breast reconstruction (IBR) procedures has been increasing in China. This study aimed to investigate the oncological safety of IBR, and to compare the survival and surgical outcomes between implant-based and autologous reconstruction. Methods: Data from patients diagnosed with invasive breast cancer who underwent immediate total breast reconstruction between 2001 and 2016 were retrospectively reviewed. Long-term breast cancer-specific survival (BCSS), disease-free survival (DFS), and locoregional recurrence-free survival (LRFS) were evaluated. Patient satisfaction with the breast was compared between the implant-based and autologous groups. BCSS, DFS, and LRFS were compared between groups after propensity score matching (PSM). Results: A total of 784 IBR procedures were identified, of which 584 were performed on patients with invasive breast cancer (implant-based, n = 288; autologous, n = 296). With a median follow-up of 71.3 months, the 10-year estimates of BCSS, DFS, and LRFS were 88.9% [95% confidence interval (CI) (85.1%–93.0%)], 79.6% [95% CI (74.7%–84.8%)], and 94.0% [95% CI (90.3%–97.8%)], respectively. A total of 124 patients completed the Breast-Q questionnaire, and no statistically significant differences were noted between groups (P = 0.823). After PSM with 27 variables, no statistically significant differences in BCSS, DFS, and LRFS were found between the implant-based (n = 177) and autologous (n = 177) groups. Further stratification according to staging, histological grade, lymph node status, and lymph-venous invasion status revealed no significant survival differences between groups. Conclusions: Both immediate implant-based and autologous reconstruction were reasonable choices with similar long-term oncological outcomes and patient-reported satisfaction among patients with invasive breast cancer in China
MiR–20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells
Additional file 3: Figure S2. The protein level of PARP and caspase3 detected by western in NCM, 5PM, NCA, 5PA, si-NC and si-Rab27B transfected CNE-2 and CNE-1 cells respectively
Higher risk of cardiovascular mortality than cancer mortality among long-term cancer survivors
BackgroundPrevious studies focused more on the short-term risk of cardiovascular (CV) death due to traumatic psychological stress after a cancer diagnosis and the acute cardiotoxicity of anticancer treatments than on the long-term risk of CV death.MethodsTime trends in the proportions of CV death (PCV), cancer death (PCA), and other causes in deaths from all causes were used to show preliminary relationships among the three causes of death in 4,806,064 patients with cancer from the Surveillance, Epidemiology, and End Results (SEER) program. Competing mortality risk curves were used to investigate when the cumulative CV mortality rate (CMRCV) began to outweigh the cumulative cancer mortality rate (CMRCA) for patients with cancer who survived for more than 10 years. Multivariable competing risk models were further used to investigate the potential factors associated with CV death.ResultsFor patients with cancer at all sites, the PCV increased from 22.8% in the 5th year after diagnosis to 31.0% in the 10th year and 35.7% in the 20th year, while the PCA decreased from 57.7% in the 5th year after diagnosis to 41.2 and 29.9% in the 10th year and 20th year, respectively. The PCV outweighed the PCA (34.6% vs. 34.1%) since the 15th year for patients with cancer at all sites, as early as the 9th year for patients with colorectal cancer (37.5% vs. 33.2%) and as late as the 22nd year for patients with breast cancer (33.5% vs. 30.6%). The CMRCV outweighed the CMRCA since the 25th year from diagnosis. Multivariate competing risk models showed that an increased risk of CV death was independently associated with older age at diagnosis [hazard ratio and 95% confidence intervals [HR (95%CI)] of 43.39 (21.33, 88.28) for ≥ 80 vs. ≤ 30 years] and local metastasis [1.07 (1.04, 1.10)] and a decreased risk among women [0.82 (0.76, 0.88)], surgery [0.90 (0.87, 0.94)], and chemotherapy [0.85 (0.81, 0.90)] among patients with cancer who survived for more than 10 years. Further analyses of patients with cancer who survived for more than 20 years and sensitivity analyses by cancer at all sites showed similar results.ConclusionCV death gradually outweighs cancer death as survival time increases for most patients with cancer. Both the cardio-oncologist and cardio-oncology care should be involved to reduce CV deaths in long-term cancer survivors
Community-based lung cancer screening by low-dose computed tomography in China:First round results and a meta-analysis
OBJECTIVE: To evaluate the efficiency of low-dose computed tomography (LDCT) screening for lung cancer in China by analyzing the baseline results of a community-based screening study accompanied with a meta-analysis. METHODS: A first round of community-based lung cancer screening with LDCT was conducted in Tianjin, China, and a systematic literature search was performed to identify LDCT screening and registry-based clinical studies for lung cancer in China. Baseline results in the community-based screening study were described by participant risk level and the lung cancer detection rate was compared with the pooled rate among the screening studies. The percentage of patients per stage was compared between the community-based study and screening and clinical studies. RESULTS: In the community-based study, 5523 participants (43.6% men) underwent LDCT. The lung cancer detection rate was 0.5% (high-risk, 1.2%; low-risk, 0.4%), with stage I disease present in 70.0% (high-risk, 50.0%; low-risk, 83.3%), and the adenocarcinoma present in 84.4% (high-risk, 61.5%; low-risk, 100%). Among all screen-detected lung cancer, women accounted for 8.3% and 66.7% in the high- and low-risk group, respectively. In the screening studies from mainland China, the lung cancer detection rate 0.6% (95 %CI: 0.3%-0.9%) for high-risk populations. The proportions with carcinoma in situ and stage I disease in the screening and clinical studies were 76.4% (95 %CI: 66.3%-85.3%) and 15.2% (95 %CI: 11.8%-18.9%), respectively. CONCLUSIONS: The stage shift of lung cancer due to screening suggests a potential effectiveness of LDCT screening in China. Nearly 70% of screen-detected lung cancers in low-risk populations are identified in women
Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis
Abstract Background The Gail model has been widely used and validated with conflicting results. The current study aims to evaluate the performance of different versions of the Gail model by means of systematic review and meta-analysis with trial sequential analysis (TSA). Methods Three systematic review and meta-analyses were conducted. Pooled expected-to-observed (E/O) ratio and pooled area under the curve (AUC) were calculated using the DerSimonian and Laird random-effects model. Pooled sensitivity, specificity and diagnostic odds ratio were evaluated by bivariate mixed-effects model. TSA was also conducted to determine whether the evidence was sufficient and conclusive. Results Gail model 1 accurately predicted breast cancer risk in American women (pooled E/O = 1.03; 95% CI 0.76–1.40). The pooled E/O ratios of Caucasian-American Gail model 2 in American, European and Asian women were 0.98 (95% CI 0.91–1.06), 1.07 (95% CI 0.66–1.74) and 2.29 (95% CI 1.95–2.68), respectively. Additionally, Asian-American Gail model 2 overestimated the risk for Asian women about two times (pooled E/O = 1.82; 95% CI 1.31–2.51). TSA showed that evidence in Asian women was sufficient; nonetheless, the results in American and European women need further verification. The pooled AUCs for Gail model 1 in American and European women and Asian females were 0.55 (95% CI 0.53–0.56) and 0.75 (95% CI 0.63–0.88), respectively, and the pooled AUCs of Caucasian-American Gail model 2 for American, Asian and European females were 0.61 (95% CI 0.59–0.63), 0.55 (95% CI 0.52–0.58) and 0.58 (95% CI 0.55–0.62), respectively. The pooled sensitivity, specificity and diagnostic odds ratio of Gail model 1 were 0.63 (95% CI 0.27–0.89), 0.91 (95% CI 0.87–0.94) and 17.38 (95% CI 2.66–113.70), respectively, and the corresponding indexes of Gail model 2 were 0.35 (95% CI 0.17–0.59), 0.86 (95% CI 0.76–0.92) and 3.38 (95% CI 1.40–8.17), respectively. Conclusions The Gail model was more accurate in predicting the incidence of breast cancer in American and European females, while far less useful for individual-level risk prediction. Moreover, the Gail model may overestimate the risk in Asian women and the results were further validated by TSA, which is an addition to the three previous systematic review and meta-analyses. Trial registration PROSPERO CRD42016047215
Effect of Statin Therapy on the Progression of Common Carotid Artery Intima-Media Thickness: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials
Aim: To evaluate the effect of statin therapy on the decrease of common carotid artery intima-media thickness (CCA-IMT) compared to placebo or usual care. Methods: A systematic search of electronic databases (MEDLINE, EMBASE, and Cochrane Center Register) up to December 2011 was performed. Two reviewers independently determined the eligibility of randomized controlled trials (RCTs) comparing statin therapy with a placebo or usual care with a minimum follow-up of 6 months. Results: Twenty-one RCTs involving 6317 individuals were included in this review. The pooled weighted mean difference (WMD) between statin therapy and placebo or usual care on CCA-IMT was -0.029 mm (95% CI: -0.045, -0.013). Subgroup analyses showed significant effects of lovastatin (WMD: -0.077; 95% CI: -0.082, -0.073) and simvastatin (WMD: -0.069; 95% CI: -0.094, -0.045), followed by pravastatin and rosuvastatin, but no significant benefits of atorvastatin, fluvastatin, or cerivastatin. A greater decrease in mean CCA-IMT was observed in the setting of secondary prevention versus primary prevention (WMD: -0.045 vs. -0.004), in younger patients versus older patients (WMD: -0.057 vs. -0.041), and in studies where the patient proportion was males >= females (-0.044 vs. -0.008). Meta-regression analysis showed a significant association between changes in mean CCA-IMT with decreasing triglyceride levels. A similar, but not statistically significant trend was also found between CCA-IMT decrease and the decrease in LDL-C levels or increase in HDL-C levels. Conclusion: Statin therapy is associated with a favorable decrease in CCA-IMT, an effect that seems to be mainly driven by the CCA-IMT at baseline and the extent of lipid decrease, specifically triglycerides. J Atheroscler Thromb, 2013; 20:108-121.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000315215000004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Peripheral Vascular DiseaseSCI(E)16ARTICLE1108-1212
The changes of subtype markers between first and second primary breast cancers
Abstract Background Previous studies investigated the changes of subtype markers [estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)] in several clinical settings, but not for second primary breast cancer (SPBC) after first primary breast cancer (FPBC). Methods A total of 15,390 patients with SPBC were preliminarily selected from the Surveillance, Epidemiology, and End Results Program, and 3777 patients with complete information on three subtype markers in both FPBC and SPBC were included in the final analyses. The changes of subtype markers and their prognostic implications and potential influential factors were well investigated. Results The overall change rates of ER, PR, and HER2 between FPBC and SPBC were 23.0% (867/3777), 35.0% (1322/3777), and 18.3% (691/3777), respectively. Gains of ER, PR, and HER2 after negative index markers were 48.7% (364/748), 37.9% (418/1103), and 11.5% (370/3211), while losses of markers after positive index markers were 16.6% (503/3029), 33.8%(904/2674), and 56.7%(321/566). Loss of ER was significantly associated with increased mortality (18.1% vs. 7.9%, p < 0.001), while gain of ER was significantly associated with decreased mortality (11.5% vs. 23.2%, p < 0.001). Similar results were observed for changes of PR status. However, loss of HER2 was significantly associated with decreased mortality (8.7% vs. 16.3%, p = 0.014), and no significant association was observed between the gain of HER2 and the prognosis of SPBC. Multivariate competing risk analyses showed similar results. HER2 status in FPBC, chemotherapy, and radiotherapy was significantly associated with changes of ER/PR (all p < 0.05), and no available therapies associated with HER2 change. Conclusion The changes of subtype markers are observed in a considerable proportion of patients and has statistically significant prognostic implications. Biopsies should be taken as a routine procedure for better therapy management
Additional file 3: of Assessment of performance of the Gail model for predicting breast cancer risk: a systematic review and meta-analysis with trial sequential analysis
Shows subgroup analysis of calibration of the Gail model. (PDF 103 kb