83 research outputs found

    Reliability checks on the Indo-US Stellar Spectral Library using Artificial Neural Networks and Principal Component Analysis

    Full text link
    The Indo-US coud\'{e} feed stellar spectral library (CFLIB) made available to the astronomical community recently by Valdes et al. (2004) contains spectra of 1273 stars in the spectral region 3460 to 9464 \AA at a high resolution of 1 \AA FWHM and a wide range of spectral types. Cross-checking the reliability of this database is an important and desirable exercise since a number of stars in this database have no known spectral types and a considerable fraction of stars has not so complete coverage in the full wavelength region of 3460-9464 \AA resulting in gaps ranging from a few \AA to several tens of \AA. In this paper, we use an automated classification scheme based on Artificial Neural Networks (ANN) to classify all 1273 stars in the database. In addition, principal component analysis (PCA) is carried out to reduce the dimensionality of the data set before the spectra are classified by the ANN. Most importantly, we have successfully demonstrated employment of a variation of the PCA technique to restore the missing data in a sample of 300 stars out of the CFLIB.Comment: 17 pages, 8 figures PASJ Vol.58, No1 (it will be issued on February 25, 2006

    Effects of activated vitamin D, alfacalcidol, and low-intensity aerobic exercise on osteopenia and muscle atrophy in type 2 diabetes mellitus model rats

    Get PDF
    Diabetes mellitus causes secondary osteoporosis and muscle atrophy. The ability of alfacalcidol (ALF) and exercise (Exe) to inhibit osteoporosis and muscle atrophy in type 2 diabetes mellitus (T2DM) model rats was examined. Twenty-week-old Otsuka Long-Evans Tokushima Fatty rats were randomized to ALF (orally 0.1 mu g/kg/day), Exe (treadmill exercise at 10 m/min, 60 min/day, 5 days/week), Comb (ALF and Exe), and Cont (T2DM control treated with vehicle and no exercise) groups (n = 8-10 per group). Sedentary Long-Evans Tokushima Otsuka rats were used as a non-hyperphagic control. After treatment for 2 or 6 weeks, blood glucose (BG) levels, cross-sectional area (CSA) of tibialis anterior muscle fibers, femoral bone mineral density (BMD), and relative quantities of muscle anabolic markers (Pax7, MyoD, and myogenin) and catabolic markers (Atrogin-1, MuRF1, and REDD1) of the soleus muscle assessed by real-time polymerase chain reaction assays were measured. Exe and Comb treatments for 6 weeks decreased BG levels compared with those of the Cont group. ALF, Exe, and Comb treatments for 2 and 6 weeks recovered the CSA compared with that of the Cont group. ALF and Comb treatments for 6 weeks increased femoral BMDs compared with those of the Cont group. After 2 weeks of treatment, Comb treatment increased MyoD expression and decreased MuRF1 expression. ALF or Exe monotherapy significantly decreased Atrogin-1 or MuRF1 expression after 2 weeks of treatment, respectively. After 6 weeks of treatment, ALF and Comb treatments decreased Atrogin-1 and REDD1. These results demonstrate that a combination of ALF and Exe improved CSA from the early phase of treatment by stimulating skeletal muscle differentiation and suppressing muscle catabolic genes. Improvements in BG, BMD, and CSA were observed as long-term effects of the combination therapy. Continued suppression of muscle catabolic genes was observed as a background to these effects

    Suzaku monitoring of hard X-ray emission from η carinae over a single binary orbital cycle

    Get PDF
    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 1011 cm-3 s-1. The NEI plasma increases in importance toward periastron

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
    corecore