151 research outputs found
Localizing by Describing: Attribute-Guided Attention Localization for Fine-Grained Recognition
A key challenge in fine-grained recognition is how to find and represent
discriminative local regions. Recent attention models are capable of learning
discriminative region localizers only from category labels with reinforcement
learning. However, not utilizing any explicit part information, they are not
able to accurately find multiple distinctive regions. In this work, we
introduce an attribute-guided attention localization scheme where the local
region localizers are learned under the guidance of part attribute
descriptions. By designing a novel reward strategy, we are able to learn to
locate regions that are spatially and semantically distinctive with
reinforcement learning algorithm. The attribute labeling requirement of the
scheme is more amenable than the accurate part location annotation required by
traditional part-based fine-grained recognition methods. Experimental results
on the CUB-200-2011 dataset demonstrate the superiority of the proposed scheme
on both fine-grained recognition and attribute recognition
Goal-Directed Processing of Naturalistic Stimuli Modulates Large-Scale Functional Connectivity
Humans selectively process external information according to their internal goals. Previous studies have found that cortical activity and interactions between specific cortical areas such as frontal-parietal regions are modulated by behavioral goals. However, these results are largely based on simple stimuli and task rules in laboratory settings. Here, we investigated how top-down goals modulate whole-brain functional connectivity (FC) under naturalistic conditions. Analyses were conducted on a publicly available functional magnetic resonance imaging (fMRI) dataset (OpenfMRI database, accession number: ds000233) collected on twelve participants who made either behavioral or taxonomic judgments of behaving animals containing in naturalistic video clips. The task-evoked FC patterns of the participants were extracted using a novel inter-subject functional correlation (ISFC) method that increases the signal-to-noise ratio for detecting task-induced inter-regional correlation compared with standard FC analysis. Using multivariate pattern analysis (MVPA) methods, we successfully predicted the task goals of the participants with ISFC patterns but not with standard FC patterns, suggests that the ISFC method may be an efficient tool for exploring subtle network differences between brain states. We further examined the predictive power of several canonical brain networks and found that many within-network and across-network ISFC measures supported task goals classification. Our findings suggest that goal-directed processing of naturalistic stimuli systematically modulates large-scale brain networks but is not limited to the local neural activity or connectivity of specific regions
Personalized Risk Assessment in Never, Light, and Heavy Smokers in a prospective cohort in Taiwan.
The objective of this study was to develop markedly improved risk prediction models for lung cancer using a prospective cohort of 395,875 participants in Taiwan. Discriminatory accuracy was measured by generation of receiver operator curves and estimation of area under the curve (AUC). In multivariate Cox regression analysis, age, gender, smoking pack-years, family history of lung cancer, personal cancer history, BMI, lung function test, and serum biomarkers such as carcinoembryonic antigen (CEA), bilirubin, alpha fetoprotein (AFP), and c-reactive protein (CRP) were identified and included in an integrative risk prediction model. The AUC in overall population was 0.851 (95% CI = 0.840-0.862), with never smokers 0.806 (95% CI = 0.790-0.819), light smokers 0.847 (95% CI = 0.824-0.871), and heavy smokers 0.732 (95% CI = 0.708-0.752). By integrating risk factors such as family history of lung cancer, CEA and AFP for light smokers, and lung function test (Maximum Mid-Expiratory Flow, MMEF25-75%), AFP and CEA for never smokers, light and never smokers with cancer risks as high as those within heavy smokers could be identified. The risk model for heavy smokers can allow us to stratify heavy smokers into subgroups with distinct risks, which, if applied to low-dose computed tomography (LDCT) screening, may greatly reduce false positives
Recommended from our members
The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases.
BACKGROUND: Interest in the interplay between host genetics and the gut microbiome in complex human diseases is increasing, with prior evidence mainly being derived from animal models. In addition, the shared and distinct microbiome features among complex human diseases remain largely unclear. RESULTS: This analysis was based on a Chinese population with 1475 participants. We estimated the SNP-based heritability, which suggested that Desulfovibrionaceae and Odoribacter had significant heritability estimates (0.456 and 0.476, respectively). We performed a microbiome genome-wide association study to identify host genetic variants associated with the gut microbiome. We then conducted bidirectional Mendelian randomization analyses to examine the potential causal associations between the gut microbiome and complex human diseases. We found that Saccharibacteria could potentially decrease the concentration of serum creatinine and increase the estimated glomerular filtration rate. On the other hand, atrial fibrillation, chronic kidney disease and prostate cancer, as predicted by host genetics, had potential causal effects on the abundance of some specific gut microbiota. For example, atrial fibrillation increased the abundance of Burkholderiales and Alcaligenaceae and decreased the abundance of Lachnobacterium, Bacteroides coprophilus, Barnesiellaceae, an undefined genus in the family Veillonellaceae and Mitsuokella. Further disease-microbiome feature analysis suggested that systemic lupus erythematosus and chronic myeloid leukaemia shared common gut microbiome features. CONCLUSIONS: These results suggest that different complex human diseases share common and distinct gut microbiome features, which may help reshape our understanding of disease aetiology in humans. Video Abstract
Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights
BACKGROUND: Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology.
OBJECTIVE: To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data.
DESIGN, SETTING, AND PARTICIPANTS: Data from 32 studies that includes 13,790 bladder cancer cases and 343,502 controls of European ancestry were used for meta-analysis.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES: Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking.
RESULTS AND LIMITATIONS: Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p \u3c 5 Ă— 10
CONCLUSIONS: We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer.
PATIENT SUMMARY: We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
- …