113 research outputs found

    Primary productivity dynamics in the summer Arctic Ocean confirms broad regulation of the electron requirement for carbon fixation by light-phytoplankton community interaction

    Get PDF
    © 2019 Zhu, Suggett, Liu, He, Lin, Le, Ishizaka, Goes and Hao. Predicting conversion of photosynthetic electron transport to inorganic carbon uptake rates (the so-called electron requirement for carbon fixation, KC) is central to the broad scale deployment of Fast Repetition Rate fluorometry (FRRf) for primary productivity studies. However, reconciling variability of KC over space and time to produce robust algorithms remains challenging, given the large number of factors that influence KC. We have previously shown that light appears to be a proximal driver of Kc in several ocean regions and we therefore examined whether and how light similarly regulated KC variability in the Arctic Ocean, during a summer cruise in 2016. Sampling transited ice-free and ice-covered waters, with temperature, salinity and Chl-a concentrations all higher for the ice-free than ice covered surface waters. Micro- and pico-phytoplankton generally dominated the ice-free and ice-covered waters, respectively. Values of KC, determined from parallel measures of daily integrated electron transport rates and 14C-uptake, were overall lower for the ice-covered vs. ice-free stations. As in our previous studies, KC was strongly linearly correlated to daily PAR (r = 0.68, n = 46, p < 0.001) and this relationship could be further improved (r = 0.84, n = 46, p < 0.001) by separating samples into ice-free (micro-phytoplankton dominated) vs. ice-covered (Nano- and Pico-phytoplankton dominated water. We subsequently contrasted the PAR-KC relationship form the Arctic waters with the previous relationships from the Ariake Bay and East China Sea and revealed that these various PAR-KC relationships can be systematically explained across regions by phytoplankton community size structures. Specifically, the value of the linear slope describing PAR-KC decreases as water bodies have an increasing fraction of larger phytoplankton. We propose that this synoptic trend reflects how phytoplankton community structure integrates past and immediate environmental histories and hence may be a better broad-scale predictor of KC than specific environmental factors such as temperature and nutrients. We provide a novel algorithm that may enable broad-scale retrieval of CO2 uptake from FRRf with knowledge of light and phytoplankton community size information

    Testing Two Student Nurse Stress Instruments in Chinese Nursing Students:A Comparative Study Using Exploratory Factor Analysis

    Get PDF
    Background. The development and transformation of nursing within professional tertiary education have exerted a great pressure and challenge upon nursing students. Stress experienced by nursing students is a common precursor of psychological distress and attrition. However, no scale is specifically used to evaluate the sources of stress experienced by nursing students in Mainland China. Aims and Objective. This study is aimed at testing and comparing the reliability and validity including sensitivity and specificity of two nursing students’ stress instruments, the Chinese version of Student Nurse Stress Index Scale (SNSI-CHI), and the Stressors in Student Nursing Scale (SINS-CN) in Chinese nursing students, and describing the stress status of nursing students in China. Methods. A cross-sectional survey was conducted in two nursing schools in Henan Province from August 2017 to January 2018. Data were collected by using a questionnaire comprising the Chinese version of SNSI (SNSI-CHI), the Chinese version of SINS (SINS-CN), and the Chinese Perceived Stress Scale (CPSS). Homogeneity and stability, content, construct and concurrent validity, and sensitivity and specificity were assessed. Results. The Cronbach’s alpha (α) of SNSI-CHI was 0.90, and the item-to-total correlations ranged from 0.35 to 0.66. The Cronbach’s α of SINS-CN was 0.93, and the item-to-total correlations ranged from 0.19 to 0.61. The findings of exploratory factor analysis (EFA) confirmed a good construct validity of SNSI-CHI and SINS-CN. The Pearson’s rank correlation coefficients, between total scores of SNSI-CHI and CPSS and SINS-CN and CPSS, were assessed to 0.38 (P<0.01) and 0.39 (P<0.01), respectively. Regarding the CPSS, as the criterion, the cut-points of SNSI-CHI and SINS-CN for the area under the receiver operator characteristic (ROC) curve were 0.77and 0.66, respectively. Conclusion. Both scales are valid and reliable for evaluating the source of stress of student nurses in China. Each has its own characteristics, but the SNSI-CHI demonstrated marginal advantage over the SINS-CN. The SNSI-CHI is short, is easily understood, and with clear dimension for the nursing students, and the SNSI-CHI is more acceptable for the users in China

    NaoXinTong Inhibits the Development of Diabetic Retinopathy in d

    Get PDF
    Buchang NaoXinTong capsule (NXT) is a Chinese Materia Medica standardized product extracted from 16 Chinese traditional medical herbs and widely used for treatment of patients with cerebrovascular and cardiovascular diseases in China. Formation of microaneurysms plays an important role in the development of diabetic retinopathy. In this study, we investigated if  NXT can protect diabetic mice against the development of diabetic retinopathy. The db/db mice (~6 weeks old), a diabetic animal model, were divided into two groups and fed normal chow or plus NXT for 14 weeks. During the treatment, fasting blood glucose levels were monthly determined. After treatment, retinas were collected to determine retinal thickness, accumulation of carbohydrate macromolecules, and caspase-3 (CAS-3) expression. Our results demonstrate that administration of NXT decreased fasting blood glucose levels. Associated with the decreased glucose levels, NXT blocked the diabetes-induced shrink of multiple layers, such as photoreceptor layer and outer nuclear/plexiform layers, in the retina. NXT also inhibited the diabetes-induced expression of CAS-3 protein and mRNA, MMP-2/9 and TNFα mRNA, accumulation of carbohydrate macromolecules, and formation of acellular capillaries in the retina. Taken together, our study shows that NXT can inhibit the development of diabetic retinopathy and suggests a new potential application of NXT in clinic

    Study on Yield Stress and Thixotropy of Hydroxypropyl Distarch Phosphate Paste

    Get PDF
    In order to study the yield stress and thixotropic behavior of the hydroxypropyl distarch phosphate (HPDSP) paste, HPDSP respectively derived from corn starch (CS) and waxy corn starch (WS) with different ratios of amylopectin were investigated. The critical mass fractions, yield stress, and thixotropic behavior of HPDSP pastes under various temperatures were studied. The results showed that, the critical mass fractions for the transition of the HPDSP solution at 5 ℃ from dilute to semi-dilute, and from semi-dilute to concentrated were 3wt% and 6wt%, respectively. The yield stress of 5wt% corn starch-hydroxypropyl distarch phosphate (CS-HPDSP) and waxy corn starch-hydroxypropyl distarch phosphate (WS-HPDSP) paste both showed weak correlations with temperature. However, at 6wt% concentration, the yield stress significantly decreased (P<0.05) by 69.52% and 77.95% respectively at 85 ℃. Additionally, the thixotropic behavior of HPDSP was influenced by both mass fraction and temperature. At 5 ℃, 5wt% CS-HPDSP and WS-HPDSP showed limited thixotropy, while at 6wt% of mass fraction, the areas of thixotropic loops of CS-HPDSP and WS-HPDSP were 163.49 and 85.00 Pa/s, respectively, and decreased by 86.38% and 92.18% at 85 ℃, respectively. WS-HPDSP exhibited less thixotropic behavior than CS-HPDSP, and showed better stability in three interval thixotropy test (3iTT). In conclusion, WS-HPDSP showed less yield stress and thixotropy compared with CS-HPDSP. This study provides theoretical supports for practical application of HPDSP as thickening agents in food products

    Nutrient co‐limitation in the subtropical Northwest Pacific

    Get PDF
    Nutrients limiting phytoplankton growth in the ocean are a critical control on ocean productivity and can underpin predicted responses to climate change. The extensive western subtropical North Pacific is assumed to be under strong nitrogen limitation, but this is not well supported by experimental evidence. Here, we report the results of 14 factorial nitrogen–phosphorus–iron addition experiments through the Philippine Sea, which demonstrate a gradient from nitrogen limitation in the north to nitrogen–iron co-limitation in the south. While nitrogen limited sites responded weakly to nutrient supply, co-limited sites bloomed with up to ~60-fold increases in chlorophyll a biomass that was dominated by initially undetectable diatoms. The transition in limiting nutrients and phytoplankton growth capacity was driven by a gradient in deep water nutrient supply, which was undetectable in surface concentration fields. We hypothesize that this large-scale phytoplankton response gradient is both climate sensitive and potentially important for regulating the distribution of predatory fish

    MODIS-derived green Noctiluca blooms in the upper Gulf of Thailand: Algorithm development and seasonal variation mapping

    Get PDF
    In recent decades, red tides of non-toxic harmful algal blooms have frequently occurred in monsoon-influenced tropical areas, particularly the green form of Noctiluca scintillans (hereafter green Noctiluca). However, our understanding of the mechanism of red tide formation is hindered by spatial and temporal constraints of field data. In this study, we used moderate resolution imaging spectroradiometer (MODIS) ocean color data along with a locally developed algal-bloom classification algorithm to investigate the seasonal variability of dominant red tides across the upper Gulf of Thailand (uGoT). During our July 2018 observation, a super green Noctiluca bloom with extraordinarily high chl-a (&gt;1,469 mg m-3) displayed a distinct spectral reflectance characteristic among red tides in blue-to-green and red-to-near infrared wavelengths. According to the distinctive in situ hyperspectral characteristics of uGoT algal blooms, we developed a classification algorithm for MODIS normalized at 488, 531, and 667 nm, which successfully discriminated green Noctiluca in three levels of blooms, namely, super (100%), strong (&gt;80%), and weak (&gt;40%), from other algal blooms (i.e., dinoflagellates, diatoms, cyanobacteria, and mixed red tide species) as well as non-bloom oceanic and coastal waters using MODIS data, as confirmed by uGoT red tide reports. Monthly MODIS-based discrimination composites from 2003 to 2021 revealed seasonal variability in the surface distribution and bloom frequency of green Noctiluca and other red tides according to the Asian monsoon seasons: the southwest monsoon (May–September) and the northeast monsoon (October–January of the following year). Green Noctiluca blooms occurred farther from the shore and estuaries than other red tides (dinoflagellates and cyanobacteria), and were much more frequent than other red tides between the Tha Chin and Chao Phraya River mouths during the non-monsoon period (February to April). The frequency and distribution of green Noctiluca blooms, as well as other algal blooms, varied with the monsoon season. By comparing MODIS-derived algal blooms to monsoon-induced factors (i.e., sea surface winds, precipitation, and river discharge), we present an unprecedented overview of the spatial and temporal dynamics of red tides throughout the uGoT under Asian monsoon conditions. This research contributes to our understanding of the impact of climate change on phytoplankton dynamics

    Exploring Variability of Trichodesmium Photophysiology Using Multi-Excitation Wavelength Fast Repetition Rate Fluorometry

    Get PDF
    Fast repetition rate fluorometry (FRRf) allows for rapid non-destructive assessment of phytoplankton photophysiology in situ yet has rarely been applied to Trichodesmium. This gap reflects long-standing concerns that Trichodesmium (and other cyanobacteria) contain pigments that are less effective at absorbing blue light which is often used as the sole excitation source in FRR fluorometers—potentially leading to underestimation of key fluorescence parameters. In this study, we use a multi-excitation FRR fluorometer (equipped with blue, green, and orange LEDs) to investigate photophysiological variability in Trichodesmium assemblages from two sites. Using a multi-LED measurement protocol (447+519+634 nm combined), we assessed maximum photochemical efficiency (Fv/Fm), functional absorption cross section of PSII (σPSII), and electron transport rates (ETRs) for Trichodesmium assemblages in both the Northwest Pacific (NWP) and North Indian Ocean in the vicinity of Sri Lanka (NIO-SL). Evaluating fluorometer performance, we showed that use of a multi-LED measuring protocol yields a significant increase of Fv/Fm for Trichodesmium compared to blue-only excitation. We found distinct photophysiological differences for Trichodesmium at both locations with higher average Fv/Fm as well as lower σPSII and non-photochemical quenching (NPQNSV) observed in the NWP compared to the NIO-SL (Kruskal–Wallis t-test df = 1, p < 0.05). Fluorescence light response curves (FLCs) further revealed differences in ETR response with a lower initial slope (αETR) and higher maximum electron turnover rate ((Formula presented.)) observed for Trichodesmium in the NWP compared to the NIO-SL, translating to a higher averaged light saturation EK (= (Formula presented.) /αETR) for cells at this location. Spatial variations in physiological parameters were both observed between and within regions, likely linked to nutrient supply and physiological stress. Finally, we applied an algorithm to estimate primary productivity of Trichodesmium using FRRf-derived fluorescence parameters, yielding an estimated carbon-fixation rate ranging from 7.8 to 21.1 mgC mg Chl-a–1 h–1 across this dataset. Overall, our findings demonstrate that capacity of multi-excitation FRRf to advance the application of Chl-a fluorescence techniques in phytoplankton assemblages dominated by cyanobacteria and reveals novel insight into environmental regulation of photoacclimation in natural Trichodesmium population

    Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface

    Full text link
    Water quality degradation is often a severe consequence of rapid economic expansion in developing countries. Methods to assess spatial-temporal patterns and trends in water quality are essential for guiding adaptive management efforts aimed at water quality remediation. Temporal and spatial patterns of surface water quality were investigated for 54 monitoring sites in the Wen-Rui Tang River watershed of eastern China to identify such patterns in water quality occurring across a rural-suburban-urban interface. Twenty physical and chemical water quality parameters were analyzed in surface waters collected once every 4-8 weeks from 2000 to 2010. Temporal and spatial variations among water quality parameters were assessed between seasons (wet/dry) and among major land use zones (urban/suburban/rural). Factor analysis was used to identify parameters that were important in assessing seasonal and spatial variations in water quality. Results revealed that parameters related to organic pollutants (dissolved oxygen (DO), chemical oxygen demand (manganese) (COD(Mn)), and 5-day biochemical oxygen demand (BOD₅)), nutrients (ammonia nitrogen (NH₄ âș-N), total nitrogen (TN), total phosphorus (TP)), and salt concentration (electrical conductivity (EC)) were the most important parameters contributing to water quality variation. Collectively, they explained 70.9 % of the total variance. A trend study using the seasonal Kendall test revealed reductions in COD(Mn), BOD₅, NH₄ âș-N, petrol, V-phen, and EC concentrations over the 11-year study period. Cluster analysis was employed to evaluate variation among 14 sampling sites representative of dominant land use categories and indicated three, three, and four clusters based on organic, nutrient, and salt water quality characteristics, respectively. Factors that are typically responsible for water quality degradation (including population, topography, and land use) showed no strong correlation with water quality trends implying considerable point source inputs in the watershed. The results of this study help inform ongoing water quality remediation efforts by documenting trends in water quality across various land use zones

    Size-fractionated N2 fixation off the Changjiang Estuary during summer

    Get PDF
    Recent evidence has shown active N2 fixation in coastal eutrophic waters, yet the rate and controlling factors remain poorly understood, particularly in large estuaries. The Changjiang Estuary (CE) and adjacent shelf are characterized by fresh, nitrogen-replete Changjiang Diluted Water (CDW) and saline, nitrogen-depletion intruded Kuroshio water (Taiwan Warm Current and nearshore Kuroshio Branch Current), where N2 fixation may be contributed by different groups (i.e., Trichodesmium and heterotrophic diazotrophs). Here, for the first time, we provide direct measurement of size-fractionated N2 fixation rates (NFRs) off the CE during summer 2014 using the 15N2 bubble tracer method. The results demonstrated considerable spatial variations (southern &gt; northern; offshore &gt; inshore) in surface and depth-integrated NFRs, averaging 0.83 nmol N L−1 d−1 and 24.3 ÎŒmol N m−2 d−1, respectively. The highest bulk NFR (99.9 ÎŒmol N m−2 d−1; mostly contributed by &gt;10 ÎŒm fraction) occurred in the southeastern East China Sea, where suffered from strong intrusion of the Kuroshio water characterized by low N/P ratio (&lt;10) and abundant Trichodesmium (up to 10.23 × 106 trichomes m−2). However, low NFR (mostly contributed by &lt;10 ÎŒm fraction) was detected in the CE controlled by the CDW, where NOx concentration (up to 80 ÎŒmol L−1) and N/P ratio (&gt;100) were high and Trichodesmium abundance was low. The &gt;10 ÎŒm fraction accounted for 60% of depth-integrated bulk NFR over the CE and adjacent shelf. We speculated that the present NFR of &gt;10 ÎŒm fraction was mostly supported by Trichodesmium. Spearman rank correlation indicated that the NFR was significantly positively correlated with Trichodesmium abundance, salinity, temperature and Secchi depth, but was negatively with turbidity, N/P ratio, NOx, and chlorophyll a concentration. Our study suggests that distribution and size structure of N2 fixation off the CE are largely regulated by water mass (intruded Kuroshio water and CDW) movement and associated diazotrophs (particularly Trichodesmium) and nutrient conditions
    • 

    corecore