77 research outputs found

    A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Get PDF
    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.Hong Kong Research Grant Council [612113]; Hong Kong Innovation Technology Commission [ITS/362/14FP]; Fundamental Research Project of Shenzhen Science & Technology Foundation [JCYJ20130402164725025]; National Natural Science Foundation of China [61574005]; Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD]SCI(E)[email protected]; [email protected]

    Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates.

    Get PDF
    Metal halide perovskite has emerged as a promising material for light-emitting diodes. In the past, the performance of devices has been improved mainly by optimizing the active and charge injection layers. However, the large refractive index difference among different materials limits the overall light extraction. Herein, we fabricate efficient methylammonium lead bromide light-emitting diodes on nanophotonic substrates with an optimal device external quantum efficiency of 17.5% which is around twice of the record for the planar device based on this material system. Furthermore, optical modelling shows that a high light extraction efficiency of 73.6% can be achieved as a result of a two-step light extraction process involving nanodome light couplers and nanowire optical antennas on the nanophotonic substrate. These results suggest that utilization of nanophotonic structures can be an effective approach to achieve high performance perovskite light-emitting diodes

    Comparing glycemic traits in defining diabetes among rural Chinese older adults

    Get PDF
    The protocol of MIND-China was registered in the Chinese Clinical Trial Registry (ChiCTR, www.chictr.org.cn; registration no.: ChiCTR1800017758).Background: We sought to identify the optimal cut-off of glycated hemoglobin (HbA1c) for defining diabetes and to assess the agreements of fasting plasma glucose (FPG), fasting serum glucose (FSG), and HbA1c in defining diabetes among rural older adults in China. Methods: This population-based cross-sectional study included 3547 participants (age ≥61 years, 57.8% women) from the Multidomain Interventions to Delay Dementia and Disability in Rural China from 2018-2019; of these, 3122 had no previously diagnosed diabetes. We identified the optimal cut-off of HbA1c against FPG ≥7.0 mmol/L for defining diabetes by using receiver operating characteristic curve and Youden index. The agreements of FPG, FSG, and HbA1c in defining diabetes were assessed using kappa statistics. Results: Among participants without previously diagnosed diabetes (n = 3122), the optimal HbA1c cut-off for defining diabetes was 6.5% (48 mmol/mol), with the sensitivity of 88.9%, specificity of 93.7%, and Youden index of 0.825. The correlation coefficients were 0.845 between FPG and FSG, 0.574 between FPG and HbA1c, and 0.529 between FSG and HbA1c in the total sample (n = 3547). The kappa statistic for defining diabetes was 0.962 between FSG and FPG, and 0.812 between HbA1c and FPG. Conclusions: The optimal cut-off of HbA1c for diagnosing diabetes against FPG >7.0 mmol/L is ≥6.5% in Chinese rural-dwelling older adults. The agreement in defining diabetes using FPG, FSG, and HbA1c is nearly perfect. These results have relevant implications for diabetes research and clinical practice among older adults in China. Clinical trial registration: The protocol of MIND-China was registered in the Chinese Clinical Trial Registry (ChiCTR, www.chictr.org.cn; registration no.: ChiCTR1800017758).Y Du was supported by the major grant from the National Key R&D Program of the Ministry of Sciences and Technology of China (Grant No.: 2017YFC1310100) and by additional grants from the National Nature Science Foundation of China (Grants No.: 81861138008 and 82011530139), the Academic Promotion Program of Shandong First Medical University (2019QL020), and the Taishan Scholar Program of Shandong Province, China (Tsqn201909182). C Qiu received grants from the Swedish Research Council (Grants No.: 2017-05819 and 2020-01574), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT) (Grant No.: CH2019-8320) for the Joint China-Sweden Mobility program, and the Karolinska Institutet, Stockholm, Sweden. The funding agency had no role in the study design, data collection and analysis, the writing of this manuscript, and in the decision to submit the work for publication.S

    Submarine groundwater discharge in Dongshan Bay, China: A master regulator of nutrients in spring and potential national significance of small bays

    Get PDF
    Despite over 90% of China’s coastal bays have an area less than 500 km2, the geochemical effects of SGD on those ecosystems are ambiguous. Based on mapping and time-series observations of Ra isotopes and nutrients, a case study of small bays (<500 km2), we revealed that submarine groundwater discharge (SGD) predominately regulated the distribution of nutrients and fueled algal growth in Dongshan Bay, China. On the bay-wide scale, the SGD rate was estimated to be 0.048 ± 0.022 m day−1 and contributed over 95% of the nutrients. At the time-series site where the bay-wide highest Ra activities in the bottom water marked an SGD hotspot with an average rate an order of magnitude greater, the maximum chlorophyll concentration co-occurred, suggesting that SGD may support the algal bloom. The ever-most significant positive correlations between 228Ra and nutrients throughout the water column (P< 0.01, R2 > 0.90 except for soluble reactive phosphorus in the surface) suggested the predominance of SGD in controlling nutrient distribution in the bay. Extrapolated to a national scale, the SGD-carried dissolved inorganic nitrogen flux in small bays was twice as much as those in large bays (>2,000 km2). Thus, the SGD-carried nutrients in small bays merit immediate attention in environmental monitoring and management

    Recent advances in ion‐sensitive field‐effect transistors for biosensing applications

    No full text
    Abstract Over the past decades, considerable development and improvement can be observed in the area of the ion‐sensitive field‐effect transistor (ISFET) for biosensing applications. The mature semiconductor industry provides a solid foundation for the commercialization of the ISFET‐based sensors and extensive research has been conducted to improve the performance of ISFET, with a special research focus on the materials, device structures, and readout topologies. In this review, the basic theories and mechanisms of ISFET are first introduced. Research on ISFET gate materials is reviewed, followed by a summary of typical gate structures and signal readout methods for the ISFET sensing system. After that, a variety of biosensing applications including ions, deoxyribonucleic acid, proteins, and microbes are presented. Finally, the prospects and challenges of the ISFET‐based biosensors are discussed

    Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths:A comparative evaluation

    No full text
    To evaluate the effect of the preparation strategy on the enantioseparation performance of β-cyclodextrin-functionalized monoliths, a series of β-cyclodextrin-functionalized organic polymeric monolithic columns were prepared through two-step, single-step, and one-pot approaches, using the same cyclodextrin, linker-spacer, and crosslinker. Physicochemical characterization of the columns was carried out by determining the morphology, β-cyclodextrin density, permeability, and chromatographic efficiency. For each type of monolithic column, the enantioresolution of 22 chiral compounds, including mandelic acid derivatives, nonsteroidal anti-inflammatory drugs, N-derivatized amino acids, and herbicides, was comparatively studied under optimum chromatographic conditions. The β-cyclodextrin-functionalized monolithic columns prepared through the one-pot approach exhibited higher enantioresolution for most chiral compounds, and they have the advantage of good controllability and simple preparation. On the other hand, the enantioresolution obtained on columns prepared through the single-step approach was quite unsatisfactory, and therefore the effect of using different linking spacers and crosslinkers was studied. A significant improvement of enantioresolution for 2-chloro-mandelic acid was obtained by using N,N-methylenebisacrylamide instead of ethylene dimethacrylate as the crosslinker in the single-step preparation

    Precise Design and Deliberate Tuning of Turn-On Fluorescence in Tetraphenylpyrazine-Based Metal−Organic Frameworks

    No full text
    The manipulation on turn-on fluorescence in solid state materials attracts increasing interests owing to their widespread applications. Herein we report how the nonradiative pathways of tetraphenylpyrazine (TPP) units in metal−organic frameworks (MOFs) systems could be hindered through a topological design approach. Two MOFs single crystals of different topology were constructed via the solvothermal reaction of a TPP-based 4,4′,4″,4‴-(pyrazine-2,3,5,6-tetrayl) tetrabenzoic acid (H4TCPP) ligand and metal cations, and their mechanisms of formation have been explored. Compared with the innate low-frequency vibrational modes of flu net Tb-TCPP-1, such as phenyl ring torsions and pyrazine twists, Tb-TCPP-2 adopts a shp net, so the dihedral angle of pyrazine ring and phenyl arms is larger, and the center pyrazine ring in TPP unit is coplanar, which hinders the radiationless decay of TPP moieties in Tb-TCPP-2. Thereby Tb-TCPP-2 exhibits a larger blue-shifted fluorescence and a higher fluorescence quantum yield than Tb-TCPP-1, which is consistent with the reduced nonradiative pathways. Furthermore, Density functional theory (DFT) studies also confirmed aforementioned tunable turn-on fluorescence mechanism. Our work constructed TPP-type MOFs based on a deliberately topological design approach, and the precise design of turn-on fluorescence holds promise as a strategy for controlling nonradiative pathways
    • …
    corecore