222 research outputs found

    Registration-Free Hybrid Learning Empowers Simple Multimodal Imaging System for High-quality Fusion Detection

    Full text link
    Multimodal fusion detection always places high demands on the imaging system and image pre-processing, while either a high-quality pre-registration system or image registration processing is costly. Unfortunately, the existing fusion methods are designed for registered source images, and the fusion of inhomogeneous features, which denotes a pair of features at the same spatial location that expresses different semantic information, cannot achieve satisfactory performance via these methods. As a result, we propose IA-VFDnet, a CNN-Transformer hybrid learning framework with a unified high-quality multimodal feature matching module (AKM) and a fusion module (WDAF), in which AKM and DWDAF work in synergy to perform high-quality infrared-aware visible fusion detection, which can be applied to smoke and wildfire detection. Furthermore, experiments on the M3FD dataset validate the superiority of the proposed method, with IA-VFDnet achieving the best detection performance than other state-of-the-art methods under conventional registered conditions. In addition, the first unregistered multimodal smoke and wildfire detection benchmark is openly available in this letter

    Directly determining orbital angular momentum of ultrashort Laguerre-Gauss pulses via autocorrelation measurement

    Full text link
    Autocorrelation measurement based on second-harmonic generation (SHG), the best-known technique for measuring the temporal duration of ultrashort pulses, could date back to the birth of ultrafast lasers. Here, we propose and experimentally demonstrate that such well-established technique can also be used to measure the orbital angular momentum of ultrashort Laguerre-Gauss (LG) pulses. By analysing the far-field pattern of the SHG signal, the full spatial structure of ultrashort LG pulses, including both azimuthal and radial indices, are unambiguously determined. Our results provide an important advancement for the well-established autocorrelation technique by extending it to reach its full potential in laser characterization, especially for structured ultrashort pulses

    Optical trapping with structured light : a review

    Get PDF
    Funding: This work was supported by the National Natural Science Foundation of China (11874102 and 61975047), the Sichuan Province Science and Technology Support Program (2020JDRC0006), and the Fundamental Research Funds for the Central Universities (ZYGX2019J102). M.C. and Y.A. thank the UK Engineering and Physical Sciences Research Council for funding.Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer. In the case of 3D trapping with a single beam, this is termed optical tweezers. Optical tweezers are a powerful and noninvasive tool for manipulating small objects, and have become indispensable in many fields, including physics, biology, soft condensed matter, among others. In the early days, optical trapping was typically accomplished with a single Gaussian beam. In recent years, we have witnessed rapid progress in the use of structured light beams with customized phase, amplitude, and polarization in optical trapping. Unusual beam properties, such as phase singularities on-axis and propagation invariant nature, have opened up novel capabilities to the study of micromanipulation in liquid, air, and vacuum. We summarize the recent advances in the field of optical trapping using structured light beams.Publisher PDFPeer reviewe
    corecore