225 research outputs found

    Continuous planting under a high density enhances the competition for nutrients among young Cunninghamia lanceolata saplings

    Get PDF
    International audienceAbstractKey messageA high-density plantation inhibited growth and biomass accumulation of Cunninghamia lanceolata(Lamb.) Hook. saplings, as well as their photosynthesis. This inhibition was enhanced in a soil that had been previously planted with the same species. The main factors limiting photosynthesis and growth were leaf-level irradiance and nutrient availability, mainly of P and Mg.ContextThe planting density and continuous planting greatly affect the photosynthesis and productivity of Chinese fir plantations. The effects of high density and of continuous plantations over several revolutions need be disentangled.AimsIn this study, the responses of C. lanceolata seedlings to a high planting density were tested. Two soils were compared: a soil from a secondary forest and one from a continuous Chinese fir plantation. The study focused on growth and the potential processes involved in deduced photosynthesis.MethodsC. lanceolata seedlings were planted in wooden boxes (100 × 100 × 50 cm) with high and low planting densities (16 vs 1 plant m−2) in two types of soil.ResultsUnder the high planting density, C. lanceolata showed less growth and biomass accumulation at the individual level and lower photosynthetic rate and instantaneous photosynthetic nutrient use efficiency (PNUE and PPUE) at the leaf level. These negative effects were larger in soils that have been continuously planted with Chinese fir. The low photosynthesis was related to low phosphorus and magnesium contents in the leaves, changes in the foliar N/P and chlorophyll a/b ratios, and the limitation of the mesophyll conductance.ConclusionsThe study showed that a high planting density induced enhanced competition for nutrients (particularly for P and Mg) and that this competition is enhanced in soils from continuous plantations compared to soils from natural forests

    Microstructural Properties and Four-Point Bend Fatigue Behavior of Ti-6.5Al-2Zr-1Mo-1V Welded Joints by Electron Beam Welding

    Get PDF
    With the help of a four-point-bend of fatigue rig, high-cycle fatigue tests were carried out on an Ti–6.5Al–2Zr-1Mo-1V titanium alloy at room temperature, 20 Hz and R = 0.1 in ambient air. The test results indicated that the fatigue strength of base metal, 888 MPa, is about 120% of yield strength. The fatigue strength of joints is 814 MPa. It is about 110% of yield strength of base metal. When the loading stress is higher, the fatigue failure region is located in middle weld zone of weld face, which the cracks are propagated along coarse β phase’s grain boundary. When the loading stress is lower, the fatigue failure region is located between the incomplete recrystallization zone and base metal. The crack nucleation resistance gradually increases from the WN to HAZ with the variable of loading stress and β phase (little α′ phases)→ α + β phase→ α phase

    Projective Invariants from Multiple Images: A Direct and Linear Method

    Get PDF

    Real-Time Scheduling for Time-Sensitive Networking: A Systematic Review and Experimental Study

    Full text link
    Time-Sensitive Networking (TSN) has been recognized as one of the key enabling technologies for Industry 4.0 and has been deployed in many time- and mission-critical industrial applications, e.g., automotive and aerospace systems. Given the stringent real-time communication requirements raised by these applications, the Time-Aware Shaper (TAS) draws special attention among the many traffic shapers developed for TSN, due to its ability to achieve deterministic latency guarantees. Extensive efforts on the designs of scheduling methods for TAS shapers have been reported in recent years to improve the system schedulability, each with their own distinct focuses and concerns. However, these scheduling methods have yet to be thoroughly evaluated, especially through experimental comparisons, to provide a systematical understanding on their performance using different evaluation metrics in various application scenarios. In this paper, we fill this gap by presenting a comprehensive experimental study on the existing TAS-based scheduling methods for TSN. We first categorize the system models employed in these work along with their formulated problems, and outline the fundamental considerations in the designs of TAS-based scheduling methods. We then perform extensive evaluation on 16 representative solutions and compare their performance under both synthetic scenarios and real-life industrial use cases. Through these experimental studies, we identify the limitations of individual scheduling methods and highlight several important findings. This work will provide foundational knowledge for the future studies on TSN real-time scheduling problems, and serve as the performance benchmarking for scheduling method development in TSN.Comment: 22 pages, ac

    Structured Parallel Architecture for Displacement MIMO Kalman Equalizer in CDMA Systems

    Get PDF
    A reduced complexity MIMO Kalman equalizer architecture is proposed in this brief by jointly considering the displacement structure and the block-Toeplitz structure. Numerical matrix–matrix multiplications with O(F3) complexity are eliminated by simple data loading process, where is the spreading factor. Finally, an iterative Conjugate-Gradient based algorithm is proposed to avoid the inverse of the Hermitian symmetric innovation covariance matrix in Kalman gain processor. The proposed architecture not only reduces the numerical complexity from O(F2) to O(Flog2F) per chip, but also facilitates the parallel and pipelined VLSI implementation in real-time processing

    Differences in Apoptosis and Cell Cycle Distribution between Human Melanoma Cell Lines UACC903 and UACC903(+6), before and after UV Irradiation

    Get PDF
    Introduction of human chromosome 6 into malignant melanoma cell line UACC903 resulted in generation of the chromosome 6-mediated suppressed cell subline UACC903(+6) that displays attenuated growth rate, anchorage-dependency, and reduced tumorigenicity. We have showed that overexpression of a chromosome 6-encoded tumor suppressor gene led to partial suppression to UACC903 cell growth. We now describe the differences in apoptosis and cell cycle between UACC903 and UACC903(+6) before and after UV irradiation. MTT assay revealed 86.92±8.24% of UACC903 cells viable, significantly (p<0.01) higher than 48.76±5.31% of UACC903(+6), at 24 hr after 254-nm UV irradiation (40 J/M2). Before UV treatment, flow cytometry analysis revealed 6.06±0.20% apoptosis in UACC903, significantly (p=0.01) lower than 6.67±0.15% in UACC903(+6). The G0/G1, S and G2/M phase cells of UACC903 were, respectively, 54.10±0.59%, 22.31±0.50% and 16.85±0.25%, all significantly (p<0.01) different from the corresponding percentages (58.82±0.35%, 20.48±0.05%, and 13.17±0.45%) of UACC903(+6). After the UV treatment, UACC903 cells in apoptosis, G0/G1, S, and G2/M became 12.59±0.17%, 38.90±0.67%, 19.74±0.70%, and 27.01±0.66%, respectively, while UACC903(+6) cells were 24.16±0.48%, 37.97±0.62%, 19.20±0.52%, and 15.69±0.14%. TUNEL assay revealed 2.31±0.62% apoptosis in UACC903, significantly (p<0.01) lower than 9.60±1.14% of UACC903(+6), and a linear and exponential increase of apoptosis, respectively, in response to the UV treatment. These results indicate that UACC903(+6) cells have a greater tendency to undergo apoptosis and are thus much more sensitive to UV irradiation. Our findings further suggest a novel mechanism for chromosome 6-mediated suppression of tumorigenesis and metastasis, i.e., through increased cell death

    Properties of localization in silicon-based lattice periodicity breaking photonic crystal waveguides

    Get PDF
    The light localization effects in silicon photonic crystal cavities at different disorder degrees have been studied using the finite difference time domain (FDTD) method in this paper. Numerical results showed that localization occurs and enhancement can be gained in the region of the cavity under certain conditions. The stabilities of the localization effects due to the structural perturbations have been investigated too. Detailed studies showed that when the degree of structural disorder is small(about 10%), the localization effects are stable, the maximum enhancement factor can reach 16.5 for incident wavelength of 785 nm and 23 for 850 nm in the cavity, with the degree of disorder about 8%. The equivalent diameter of the localized spot is almost constant at different disorder degrees, approximating to {\lambda \mathord{/ {\vphantom {\lambda 7}} \kern-\nulldelimiterspace} 7}λ/7, which turned out to be independent on the structural perturbation
    • …
    corecore