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Abstract—A reduced complexity MIMO Kalman equalizer ar-
chitecture is proposed in this brief by jointly considering the dis-
placement structure and the block-Toeplitz structure. Numerical
matrix–matrix multiplications with ( 3) complexity are elim-
inated by simple data loading process, where is the spreading
factor. Finally, an iterative Conjugate-Gradient based algorithm
is proposed to avoid the inverse of the Hermitian symmetric in-
novation covariance matrix in Kalman gain processor. The pro-
posed architecture not only reduces the numerical complexity from
( 2) to ( log

2
) per chip, but also facilitates the parallel

and pipelined VLSI implementation in real-time processing.

Index Terms—Displacement, Kalman, multiple-input–multiple-
output (MIMO), parallel architecture.

I. INTRODUCTION

MULTIPLE-INPUT–multiple-output (MIMO) technology
[1] using multiple antennas at both the transmitter and

receiver sides has emerged as a significant breakthrough to
increase the spectral efficiency dramatically. Linear min-
imum-mean-square-error (LMMSE)-based algorithms [2]
have demonstrated fairly good performance to suppress the
interferences in slow-fading multi-path channels. However,
they lack the tracking capability to the time-varying channels
in fast-fading environments. Kalman filter [3] based on the
state-space model of the dynamical system is known to provide
the best linear unbiased estimator (BLUE) of a linear system
[4].

However, they apply the conventional Kalman equalizer has
very high complexity for real-time hardware implementation,
especially for the MIMO scenarios. The Kalman filter involves
an iterative computing structure to compute the Kalman gain
and predict the state of the system. The complexity is dominated
by numerous large size matrix–matrix multiplications and an
inverse of the innovation covariance matrix in Kalman gain and
new state estimation.

A fast Kalman algorithm is described in [6] to replace the Ric-
cati recursions in the conventional Kalman filters by a different
set of fast Chandrasekhar–Kailath–Morf–Sidhu (CKMS) recur-
sions for complexity reduction. The CKMS recursion was pro-
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posed for general Kalman filter problem but does not apply the
specific structures embedded in the MIMO Kalman equalizer.
In this brief, we propose a structured parallel computing archi-
tecture for the symbol level MIMO Kalman equalizer proposed
in [4] in CDMA systems. We explore the block-displacement
structure in the state transition and Kalman gain to reduce the
redundant multiplications dramatically. Combining multiple ef-
forts, the proposed architecture not only reduces the numerical
complexity from to per chip, but also fa-
cilitates the parallel and pipelined VLSI implementation.

II. MIMO CDMA SYSTEM AND STATE-SPACE MODEL

We consider the same MIMO CDMA downlink as in [2] and
[4] based on spatial multiplexing with Tx antennas, Rx
antennas and users. The th chip at the th transmit antenna
is given by . The received chip level signal at the th Rx
antenna is given by . By collecting the consecutive chips
at the th symbol from each of the Rx antennas in a signal
vector and packing
the signal vectors from each receive antenna, we form a signal
vector as . Here, is
the spreading gain. In vector form, the received signal is given
by

(1)
where is the additive Gaussian noise. The trans-
mitted chip vector for the th transmit antenna is given by

and the overall transmitted signal vector is given by stacking
the substreams for multiple transmit antennas as

. is the channel delay
spread. The channel matrix from multiple transmit antennas is
defined as , where

is the channel matrix from the th transmit antenna and
th receive antenna.

The Kalman filter estimates the state given the entire
observed data using the state-space model. In
[4], both symbol level and chip level Kalman filters are proposed
for the CDMA downlink. We consider the symbol-level Kalman
Equalizer in this brief because of its superior performance over
the chip level equalizer. It is natural to have the measurement
equation as the received signal model and the process equation
as an excitation of some process noise

(2)
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TABLE I
SUMMARY OF THE COMMONALITY EXTRACTED KALMAN PROCEDURE

(3)

where the measure matrix is the overall MIMO channel matrix H(k)

given by . is
a constant state transition matrix whose details are given later.

denotes the measurement noise and denotes the
process noise.

III. DISPLACEMENT MIMO KALMAN EQUALIZER

A. Modular-Based Architecture

An innovation process and its covariance matrix of the in-
novation process are defined by
and . denotes the MMSE
estimation of the observed data at time , given all the past
observed data from time 1 to . It is shown that

where the matrix
is the covariance matrix of the predicted state error defined by

. Here
is the predicted state error vector at time

using data up to time . By defining a Kalman gain as
, the new state estimate is given

by

(4)

The Riccati equation provides a recursive computation proce-
dure of the predicted state error covariance matrix
and the Kalman gain. For the purpose of VLSI-based implemen-
tation, the streamlined procedure is given in Table I by analyzing
the data dependency and the timing relationship.

The logic block diagram of the VLSI oriented architecture is
shown in Fig. 1. The architecture is constructed with two par-
allel feedback loop structures that are associated with a common
Kalman gain . On the top is the one step predictor of the
state using the input observation . A MUX first se-
lects either the init state or the delayed feedback state estimate
for , where in the figure denotes the delay
of the vector or matrix. The is first pre-mul-
tiplied (PRM) by the transition matrix to generate

Fig. 1. Modularized data path block diagram of the Kalman filter.

and then PRM by the channel matrix . The result is sub-
tracted from the input observation to generate the inno-
vation process . The innovation is then multiplied by the
Kalman gain and added to the to finally gen-
erate the filtered state estimate . The dynamical transition
is repeated for each time to get state sequence estimate.

On the bottom is the feedback loop of the covariance
and the Kalman gain processor. Similarly, a MUX first selects
from the init value or the delayed feed for the

. It is PRM by and then post-multiplied (PTM)
by . The covariance of the process noise is then
added to form an intermediate covariance . This is
PRM by to generate the , whose result is then Her-
mitian transposed. Note that the Hermitian transpose is a virtual
operation with no time/memory resource usage because the sub-
sequential operations can use the structure of explicitly.

is PRM by and the result is added to the measure-
ment noise covariance matrix to form the innovation co-
variance . The Kalman gain is produced as the result of
the pre-multiplication of with the inverse of . The

is then updated in the Riccati processor accordingly.

B. MIMO Displacement Structure

In this section, we will show that because the transition ma-
trix has some displacement structure, the matrix multiplication
complexity can be dramatically reduced. Some explicit matrix
multiplications are eliminated by simple data-loading process
of a small portion of the full matrix. It can be shown that the
transition matrix can be designed as follows:

(5)

(6)

where denotes the Kronecker product. It is assumed that
in most situations. The process noise is then given by

where the process noise for
the th transmit antenna is given by

. It is easy to verify that to pre-multiply
a matrix with is equivalent to shifting the first rows of
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the matrix to the bottom and adding rows of zeros to the

upper portion. To post-multiply a matrix with is equiva-
lent to shifting the first columns of the matrix to the right and
adding rows of zeros to the left portion. For the MIMO case,
the feature forms a block-displacement structure and will be ap-
plied to related computations step by step according to Table I.

1) State Transition Equation: It is shown that the state
transition equation can be partitioned into transmit
antennas using the Kronecker product.

. Thus,
the th sub block of the transition is given by

, where

is the upper rows of the previous state.
2) Filtered State Estimation Output & Feedback: This

displacement structure can be further applied in the filtered
state estimation and feedback process. Similarly, we can par-
tition the update equation
into , where

and . We
further partition the element-wise state estimate and the
Kalman gain into three sub-blocks, the upper rows,
the lower rows and the remaining rows in the center
as and

. We define the
effective transition state vector as the lower rows of the state
at time . Only the lower portion is updated from the
previous state with the Kalman gain. Then the new effective
transition state vector is simply a copy of the new upper portion
of the state.

3) Predicted State Error Covariance Matrix: Another
process involved with the transition matrix is the co-
variance matrix computation of the predicted state error

. It is shown that
the process noise covariance is given by

(7)

(8)

It is also pointed out in [4] that the covariance matrix
can be estimated as a unitary matrix determined by the total
transmitted power when a priori is unknown because is
determined by the transmitted symbols. Thus, if we span the
MIMO covariance matrix from the sub blocks as

and for
and , we can get the partitioned sub blocks given

by and
.

Using the feature of the pre-multiplication and post-multipli-
cation with the displacement transition matrix, we can show that
the new covariance matrix is given by the following partitioning:

where in one dimension of the matrix denotes the
th to th elements in this dimension. The sub block matrix

Fig. 2. Displacement-based architecture for P(kjk � 1).

is a left-upper corner of the partitioned
covariance matrix defined by

.
Thus, the matrix multiplications and additions in computing

from are all eliminated. Logically
we only need to copy some small sub-blocks of

to following the special pattern. This displacement
procedure is demonstrated by the data loading process in Fig. 2.

4) Update State Error Covariance Matrix: Jointly consid-
ering the feedback data path of and the displacement
structure in , it is clear that only the upper left corner

are utilized for the element matrix
. The other elements are redundant information that

will be dropped during the displacement procedure. Because
there is matrix multiplication of the Kalman gain with
as in , we define an in-
termediate variable for the multiplication and partition it
to MIMO sub-blocks as for

. Instead of computing the full matrix of ,
we only need to compute the relevant submatrices given by

.
We also partition the Kalman gain and the

matrices into MIMO sub blocks as and
where is

further partitioned into the upper and lower sub-matrices while
is partitioned into the left and

right sub-matrices. It is clear that the element block in the
is given by

(9)

Comparing the displacement structure, only the left-upper
corner of size is necessary, which is given by

.
This is only associated with the upper part of
and left part of . As a summary, the updated ef-
fective state error covariance is simplified by adding the
correction item to the corner of which
is constant to the transmit antenna elements and as

.
This optimization not only saves many computations and
memory storage but also fastens the update and feedback time.

IV. FFT-ACCELERATION

In the innovation and the omega matrix generation, there
are some pre-multiplications by the channel matrix as
in and .
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We define the estimated observation and partition it into
the sub-vectors for the multiple receive antennas as

. Since the channel
matrix from the th transmit antenna and th receive antenna

has the Toeplitz structure as shown in [4], the ma-
trix–vector multiplication can be viewed as an FIR filter with
the channel impulse response , where is
the th path channel coefficient between the th transmit and
th receive antenna. This can be implemented in the time

domain by tapped delay line architecture as a conventional
FIR. It is well known that the time-domain FIR filtering can
also be implemented by FFT-based circular convolution in
the frequency domain. The similar architecture can be applied
directly to the Kalman filtering problem in this brief. This
achieves complexity algorithm
versus for the direct matrix–vector multiplication
and versus for the
direct matrix–matrix multiplications in the innovation estima-
tion and the Kalman gain processor. The procedure is described
briefly as follows.

1) Take the FFT of the zero-padded channel impulse response
.

2) Take the FFT of the right-product vector .
3) Compute the dot product of the frequency-domain coeffi-

cients.
4) Take the IFFT of the product.
5) Truncate the result to get the valid coefficients as the ma-

trix–vector multiplication result.
Note that we only need to take FFT once for each channel

impulse response. For the multiple vectors to be filtered, we can
form a pipelined FFT computation to use the hardware resource
efficiently. The computation of the covariance matrix of inno-
vation as is also accelerated by
the FFT-based computing architecture with similar procedure.

V. ITERATIVE INVERSE SOLVER

With the aforementioned optimizations, the complexity has
been reduced dramatically. However, there is one last hard work
in computing the Kalman gain as in

(10)

It is known that a Gaussian elimination can be applied to solve
the matrix inverse with complexity at the order of .
Moreover, Cholesky decomposition can also be applied to ac-
celerate the speed by reducing the hidden constant factor in the
order of complexity. However, since these two solutions do not
use the structure of the matrix, the complexity is at the same
order as to solve the inverse of a general matrix.

We made the observation that is a Hermi-
tian symmetric matrix. It is known that the iterative Conjugate
Gradient (CG) algorithm can solve the inverse of this type of
matrix more efficiently [5]. Secondly, the full matrix of is
not necessary from the displacement structure of the state tran-
sition matrix. Only the lower and the left upper

corner are required. This feature can also be used
to optimize the matrix inverse and the matrix multiplication in-
volved in the Kalman gain computation.

TABLE II
SUMMARY OF THE CG PROCEDURE FOR THE ���(k) = R �(k)

To avoid the direct inverse of using the iterative CG al-
gorithm, the Kalman gain computation and the state update is
re-partitioned to generate the following new problem:

where and respec-
tively. With this changed order of computation, the iterative pro-
cedure of the CG-based algorithm is shown as follows.

A. Computation of

The computation of is a direct application of the itera-
tive Conjugate-Gradient algorithm. The procedure is shown in
Table II, where denotes the number of CG iteration.

Thus, the inverse of the matrix is reduced to per-
forming matrix–vector multiplication in the recursive structure.
The Kalman gain is not computed explicitly. Note that the
vector can also be partitioned into the

. Using the displacement structure
for the filtered state estimate discussed in Section III, the
element vector can still be partitioned into the upper,
center, and lower portion as ,
where ; and

.

B. Update of Predicted State Error Covariance

Another computation involving the Kalman gain and the
inverse of the covariance matrix of the innovation is the update
of the predicted state error covariance . With the defi-
nition of , the CG procedure will need
to be applied to the column vectors of and . It can
be shown that can also be partitioned
into sub-block matrices for the MIMO configuration. The
element is given by
where the is the element of and is parti-
tioned to . Since only the left upper
corner in is of interest, the full matrix of is not
necessary and the whole matrix multiplication by is
redundant. Thus, if is defined by column sub-matrices
as , and each is
further partitioned into the left portion and right portion as

, we only need to calculate the left
portion from the CG iterative algorithm. Because the iterative
algorithm finally reduces to matrix–vector multiplications in a
loop, the columns of interest can be easily identified and picked
up by simply ignoring the right portions. The effective data for
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Fig. 3. Effective data for matrix multiplication and conjugate gradient matrix
inversion in 


(k) and ���(k).

Fig. 4. Performance of the 16-QAM MIMO link with M = 2, N = 2, U =
25, L = 10, Veh-A at speed of v = 50 km/h, J = 4.

both the and are shown in Fig. 3 as the shaded por-
tion. The iterative procedure to compute the matrix inverse and
multiplication is only necessary for the
effective data. The detailed procedure is similar to Table II and
omitted here. Thus, the direct-matrix inverse of is avoided
and the “inverse multiplication” is reduced to a small portion
of the matrix–vector multiplications in an iteration loop.

VI. PERFORMANCE & COMPLEXITY

A. Performance

The performance is evaluated in a CDMA2000 1X EV-DV
simulation chain. Both the bit-error rate (BER) and the block-
error rate (BLER) are compared from a link level simulation.
The ITU Veh-A channel model is applied. forward error cor-
recting (FEC) code of rate 0.5156 is applied. In the simulation,
the spreading gain is 32 and codes are applied for data
transmission. Fig. 4 shows the performance for the 16 quadra-
ture amplitude modulation (QAM) for the 2 2 MIMO config-
uration with a speed of 50 km/h with four CG iterations. The
performance superiority of the Kalman filter over the LMMSE
chip equalizer is obvious.

B. Numerical Complexity

In this section, we briefly summarize the complexity reduc-
tion achieved from the displacement structure, the FFT-based

TABLE III
COMPLEXITY COMPARISON BEFORE/AFTER COMPLEXITY REDUCTION: THE

COMPLEXITY IN EACH STEP IS FOR A SYMBOL DURATION

acceleration and the effective Conjugate Gradient iterative
solver. The complexity using the conventional algorithms and
using the proposed fast algorithms are compared in Table III
for the dominant operations in each step. It is clear that the
original Kalman procedure has the complexity of for
each the matrix–matrix multiplication and the inversion of
the Kalman gain. Since these operations are for a symbol
duration, the complexity of the original procedure is
per chip. After using the displacement structure, many matrix
multiplications involving the transition matrix are replaced by
simple data loading procedures. Moreover, the FFT accelera-
tion of the matrix multiplication for the channel matrix reduces
the complexity to several FFT operations with complexity
of . Finally, the conjugate gradient procedure
with only the effective sub blocks avoids the direct matrix
inverse and reduces the complexity to some matrix vector
multiplications. Overall, the complexity per chip is reduced to

. Moreover, the proposed architecture has more
parallel structure, which is more suitable for VLSI real-time
implementation.

VII. CONCLUSION

In this brief, efficient VLSI-oriented recursive architecture
for MIMO Kalman equalizer is proposed by exploring the
block-displacement structure and block Toeplitz structure of
the channel matrix to reduce the redundant multiplications in
the state transition and Kalman gain dramatically. The pro-
posed architecture not only reduces the numerical complexity
to per chip, but also facilitates the parallel and
pipelined real-time VLSI implementation.
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