8,721 research outputs found

    Developing a Low-Cost Force Treadmill via Dynamic Modeling

    Get PDF
    By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of “walk-on-the-spot motion,” it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach

    Assessing Postural Stability Via the Correlation Patterns of Vertical Ground Reaction Force Components

    Get PDF
    Background Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). Methods In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. Results In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18–24 and 65–73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. Conclusions By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system

    Symmetric non-Hermitian skin effect with emergent nonlocal correspondence

    Full text link
    The non-Hermitian skin effect (NHSE) refers to that an extensive number of eigenstates of a non-Hermitian system are localized in open boundaries. Here we predict a universal phenomenon that with local particle-hole(-like) symmetry (PHS) the skin modes must be equally distributed on different boundaries, manifesting a novel nonlocalization of the local PHS, which is unique to non-Hermitian systems. We develop a generic theory for the emergent nonlocal symmetry-protected NHSE by connecting the non-Hermitian system to an extended Hermitian Hamiltonian in a quadruplicate Hilbert space, which maps the skin modes to the topological zero modes and the PHS to an emergent nonlocal symmetry in the perspective of many body physics. The predicted NHSE is robust against perturbations. We propose optical Raman lattice models to observe the predicted phenomena in all physical dimensions, which are accessible with cold-atom experiments.Comment: 5+9 pages, 3+4 figure

    1-{(1Z)-1-[3-(2,4-Dichloro­phen­oxy)prop­oxy]-1-(2,4-difluoro­phen­yl)prop-1-en-2-yl}-1H-1,2,4-triazole

    Get PDF
    In the title compound, C20H17Cl2F2N3O2, the triazole ring makes dihedral angles of 28.0 (3) and 72.5 (2)° with the 2,4-dichloro­pheny and 2,4-difluoro­phenyl rings, respectively, and the mol­ecule adopts a Z-conformation about the C=C double bond. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules

    Tracing blastomere fate choices of early embryos in single cell culture

    Get PDF
    Blastomeres of early vertebrate embryos undergo numerous fate choices for division, motility, pluripotency maintenance and restriction culminating in various cell lineages. Tracing blastomere fate choices at the single cell level in vitro has not been possible because of the inability to isolate and cultivate early blastomeres as single cells. Here we report the establishment of single cell culture system in the fish medaka, enabling the isolation and cultivation of individual blastomeres from 16- to 64-cell embryos for fate tracing at the single cell level in vitro. Interestingly, these blastomeres immediately upon isolation exhibit motility, lose synchronous divisions and even stop dividing in ≥50% cases, suggesting that the widely accepted nucleocytoplasmic ratio controlling synchronous divisions in entire embryos does not operate on individual blastomeres. We even observed abortive division, endomitosis and cell fusion. Strikingly, ~5% of blastomeres in single cell culture generated extraembryonic yolk syncytial cells, embryonic stem cells and neural crest-derived pigment cells with timings mimicking their appearance in embryos. We revealed the maternal inheritance of key lineage regulators and their differential expression in cleavage embryos. Therefore, medaka blastomeres possess the accessibility for single cell culture, previously unidentified heterogeneity in motility, division, gene expression and intrinsic ability to generate major extraembryonic and embryonic lineages without positioning cues. Our data demonstrate the fidelity and potential of the single cell culture system for tracking blastomere fate decisions under defined conditions in vitro

    Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite

    Get PDF
    Three metal hydroxide nanorods (MHR) with uniform diameters were synthesized, and then combined with graphene nanosheets (GNS) to prepare acrylonitrile–butadiene–styrene (ABS) copolymer composites. An excellent dispersion of exfoliated two-dimensional (2-D) GNS and 1-D MHR in the ABS matrix was achieved. The effects of combined GNS and MHR on the mechanical, thermal and flame retardant properties of the ABS composites were investigated. With the addition of 2 wt% GNS and 4 wt% Co(OH)2, the tensile strength, bending strength and storage modulus of the ABS composites were increased by 45.1%, 40.5% and 42.3% respectively. The ABS/GNS/Co(OH)2 ternary composite shows the lowest maximum weight loss rate and highest residue yield. Noticeable reduction in the flammability was achieved with the addition of GNS and Co(OH)2, due to the formation of more continuous and compact charred layers that retarded the mass and heat transfer between the flame and the polymer matrix

    Production of Spin-Semiconducting Zigzag Graphene Nanoribbons by Constructing Asymmetric Notch on Graphene Edges

    Full text link
    The electronic and magnetic properties of zigzag graphene nanoribbons with asymmetric notches along their edges are investigated by first principle density functional theory calculations. It is found that the electronic and magnetic properties of the asymmetrically-notched graphene nanoribbons are closely related with the depth of notches, but weekly dependent on the length of notches. As the relative depth of notch increases, the energy level of spin-up and spin-down becomes greatly shifted, associated with the gradual increase of magnetic momentum. The asymmetric band shift allows the asymmetrically notched graphene nanoribbons to be a spintronic semiconductor, through which an N- or P-type spin-semiconductor can be obtained by doping B or N atoms

    Frequency stability in modern power network from complex network viewpoint

    Get PDF
    Acknowledgement The work is supported in part by Key Program of Nature Science Fund of Shaanxi Province (2016ZDJC-01), IRT of Shaanxi Province (2013KCT-04).Peer reviewedPostprin
    corecore