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Abstract
Grid-connected operation of Renewable Energy and Storage (RES) nodes make
the dynamics of modern power grid to be more complex. A model of power grid,
considering RES nodes, is being proposed to address frequency synchronization
and stability analysis. First, a unified dynamical model of four different types of
nodes are established according to the swing equation, including the RES nodes
with power-frequency droop inverter controllers. The storage nodes have charg-
ing and discharging states. We provide a sufficient condition for the existence and
stability of frequency synchronized solution via the linear time-varying consen-
sus protocol of multi-agent system. The results are validated by Western System
Coordinating Council and the Shaanxi North Power Grid model.
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1. Introduction

To solve the problem of energy consumption and carbon dioxide emission
caused by the traditional fossil energy generation, the proportion of renewable en-
ergy generation is being increased in power grids. Grid-connected operation of
intermittent energy, like solar energy or wind energy, leads to fluctuations in ener-
gy supplying and demanding, in spite of energy storage systems reduce such fluc-
tuations. The modern power grid, therefore, is a time-varying, nonlinear coupled
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network, heterogeneously composed of Renewable Energy and Storage (RES) n-
odes and the conventional generation nodes [1]. Therefore the traditional frequen-
cy synchronization methods are difficult to apply. The synchronization concept
can be traced back to 1665, when C. Huygens found that coupled pendula would
synchronously swing. The Kuramoto model, proposed by biologist Winfree and
Kuramoto, has made much contribution to the synchronization research. A re-
view [2] summarized a series of research results about the Kuramoto oscillators,
including the stability analysis. Kuramoto model with a bimodal parameter distri-
bution was proposed to describe the synchronous oscillation of the generator and
load in [3]. However, there were the following shortcomings: 1) Lack of theoret-
ical proofs about the stability and convergence of the frequency synchronization
point; 2) The coupling weights of each edge and damping constant of each node is
unnecessarily assumed to be equal; 3) The analysis complexity increases with the
presence of higher order derivatives; 4) The model does not take RES nodes into
account. The non-uniform Kuramoto model and the multi-agent consensus proto-
col were used to derive the sufficient condition for the frequency synchronization
of power grid in [4]. However, the frequency stability analysis of power grid in
[4] only considered the network connectivity and the initial phase of the nodes,
without taking into account the effect of the Laplacian matrix on the stability. The
critical coupling strength for frequency synchronization in power grid was ob-
tained in [5] and [6] in 2012 by assuming that the coupling weights of each edge
and the damping constant of each node are equal and did not consider the RES n-
odes as well[5] [6], which was not agreeable with practical grids. The output of the
generation nodes were controlled cooperatively according to the information ex-
changed with the ambient agent and the multi-agent consensus protocol, in order
to guarantee the frequency stability of the grid[7]. This article considered the dy-
namics of renewable energy equipped with droop controller, but did not consider
the storage nodes with different working states. A necessary and sufficient con-
dition for the existence of frequency synchronization solution in micro-grid with
droop-controlled inverters were derived in [8]. However, all loads were assumed
to be constant power loads in [8]. The methods of analyzing power grid frequen-
cy synchronization are mainly divided into two approaches: the grid topology and
the grid dynamics. From the grid topology approach, the synchronous ability of
the various grid sizes and the evolution patterns are primarily compared and an-
alyzed using numerical experiments and statistical physics methods [9] [10], which
demonstrates the static characteristics in an analytical way, but cannot reflect the
dynamical behavior of the power grid. From the grid dynamics approach, the re-
lationship between dynamical behavior and the network parameters of the power

2



grid, and the grid frequency synchronization conditions are obtained in an analyt-
ical way[3].

In this paper, to analyze frequency stability from the dynamics approach, we
establish an unified dynamical model for the power grid including RES nodes,
which simplifies the analysis complexity about the power grid frequency synchro-
nization. We show that the frequency stability of power grid is influenced not
only by the network connectivity and the initial phase of the nodes, but also by
the time-varying Laplacian matrix of the power grid. Reference [4] gives the con-
dition for the existence of frequency synchronized solution, but the result cannot
guarantee the stability of the synchronized solution. A supplementary condition
is given in this paper to decide whether the synchronized solution is stable by esti-
mating the eigenvalues of the time-varying Laplacian matrix. Thereby, we derive
the sufficient conditions for frequency synchronization and its stability in power
grids that contains RES nodes. Finally, the conditions are verified by the Western
System Coordinating Council model and the Shaanxi North Power Grid.

The remainder of this paper is organized as follows: in Section 2, some rele-
vant preliminaries and notations are introduced. In Section 3, the uniform mathe-
matical power grid model for four different types of nodes are given. In Section 4,
the sufficient condition for frequency synchronization and stability of power grid-
s are derived. The simulation results of both the Western System Coordinating
Council and the Shaanxi North Power Grid are given in Section 5. Finally, some
conclusions are drawn in Section 6.

2. Preliminaries and notation

2.1. The set of phase differences and positive invariance
From graphics geometry theory, S 1 = (−π,+π] denotes the unit circle and

the n-torus T n = S 1 × S 2... × S n is the Cartesian product of n unit circles. For
γ ∈ [0, π], let ∆ (γ) ⊂ T n be a set of angle arrays (θ1, θ2, . . . , θn) ∈ T n, so that there
exists an arc of length γ containing all θ1, θ2, . . . , θn in its interior, which denotes
the distance between two arbitrary angles in the phase arrays. Thus, an array of
angles θ ∈ ∆ (γ) satisfies maxi, j∈{1,2,...,n}

∣∣∣θi − θ j

∣∣∣ ! γ, i.e., at each time t there exists
an arc of length γ containing all angles θi(t); the set of phase differences ∆ (γ) is
positively invariant if it is no longer increasing. [3]

2.2. Algebraic graph theory
An arbitrary complex network can be represented by the relevant weighted

graph.[11] A weighted directed graph is a triple set G = (v, ε, A), where v =
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{1, 2, ..., n} is the set of nodes, ε = {(i, j) |i, j ∈ v} is the set of directed edges,
and A ∈ Rn×n is the adjacent matrix, A satisfies ai j > 0 for each directed edge
{i, j} ∈ ε and otherwise ai j = 0. ai j is the coupling strength between node i and
j. Degree matrix De ∈ Rv×v is a diagonal matrix whose main diagonal entries
are

n∑
j=1

ai j. The node-edge incidence matrix B ∈ Rv×ε is defined component-wise

as Bkl = 1 if node k is the sink node of edge l and as Bkl = −1 if node k is the
source node of edge l, with all other elements being zeros. Then the Laplacian ma-
trix is given by L =De−A, and is positive semidefinite with eigenvalues satisfying
0 = λ1 < λ2 < ...λ|v|, if ai j > 0.[12]

2.3. Linear time-varying consensus protocol of multi-agent system
Lemma 1. [13] Consider n nodes multi-agent system defined on a graph G =

(v, ε,A), xi is the state variable of agent i, (Akl) = αkl is the coupling strength,
which describes the interaction between agents, assume that each node satisfies
the following equation,

ẋk(t) =
n∑

l=1.l!k

akl(t)(xl(t) − xk(t)), (1)

which is given by
ẋ = A(t)x. (2)

Assume that all but one of the eigenvalues of the system matrix A have strictly
negative real part, the only exception is the trivial eigenvalues at zero, if and only
if the associated digraph has (at least) one node from which all other nodes may
be reached, then all the system state variables stably converge to a common value.

According to Lemma 1, we learn that, with the network connectivity varying,
the eigenvalues of A(t) are also time-varying. When any, but zero eigenvalues of
the system matrix A, do not have strictly negative real part, or the globally reached
node does not exist, then the equilibria states of Eq. (2) are no longer stable.

3. Mathematical model of different nodes in a power grid

3.1. The dynamical model of the generator
The dynamical model of the generator is given as follows

Diθ̇i = Pmi −
⎛
⎜⎜⎜⎜⎜⎜⎝E2

i Gii +

n∑

j=1

EiE jYi j sin(θi − θ j + ϕi j)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (3)
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where, in terms of node i, Di and Mi are the damping and inertia constants, respec-
tively, θi of node i is the angle of the shaft in radians with respect to a synchronous-
ly rotating reference, ϕi j is the phase shifts caused by transfer conductance, and
Ei is the voltage magnitude of the synchronous machine. Yi j is the admittance of
transmission line between node i and node j, and Gii is the self-conductance of
node i. More details about the model parameters and derivation of Eq. (3) could
be found in Appendix A.

3.2. The dynamical node of the load
Similar to the generator, the dynamics of the load is given as follows

Miθ̈i = −PLi − Diθ̇i −
⎛
⎜⎜⎜⎜⎜⎜⎝E2

i Gii +

n∑

j=1

EiE j sin(θi − θ j)

⎞
⎟⎟⎟⎟⎟⎟⎠ . (4)

Note that, the main difference between (4) and (A. 29) in Appendix A is the me-
chanical power. Since the load node is the energy consumption node, PLi repre-
sents the active power that the load node consumes.

Similarly, when we investigate frequency synchronization, the inertia term can
be omitted due to the fact that it only affects the convergence time of synchroniza-
tion, thus dynamic models of the load nodes can be rewritten as

Diθ̇i = −PLi −
⎛
⎜⎜⎜⎜⎜⎜⎝E2

i Gii +

n∑

j=1

EiE j sin(θi − θ j)

⎞
⎟⎟⎟⎟⎟⎟⎠ . (5)

3.3. Model of RES nodes based on droop control
For grid-connected RES nodes, it is very necessary to convert the DC or

the non-industrial frequency AC power to the industrial frequency AC power by
means of inverters. Power grid typically contains a bank of RES nodes equipped
with power-frequency droop inverter controllers operated in parallel. Therefore,
we establish the dynamics of RES nodes based on the droop control.

Droop control is a basic way of grid connected converters control, and is wide-
ly applied in the RES batteries converter technique[15]. The frequency droop con-
trol formula is

fi = f0i − npi Pi, (6)

where the parameter npi = Xi/2πEiE is referred to as the droop coefficient, Ei is
the output voltage of inverter connected to the RES nodes, E is the voltage of DC
bus, jXi is the line impedance between inverter and bus, f0i is the output frequency
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of the unload inverter, and Pi is the output active power of the RES node. Proofs
about droop control can be found in Appendix B. For simplicity, let Di = 1

/
npi ,

Eq. (6) is rewritten as
Di fi = Di f0i − Pi. (7)

In addition, we denote fi by θ̇i, the nominal power Di f0i by Pdi, and the output
power Pi as is done in (A. 26) in Appendix A. Then Eq. (7) is rewritten as

Diθ̇i = Pdi −
⎛
⎜⎜⎜⎜⎜⎜⎝E2

i Gii +

n∑

j=1

EiE j sin(θi − θ j)

⎞
⎟⎟⎟⎟⎟⎟⎠ . (8)

Equation (8) is the model of RES nodes for discharging state.
The storage node works not only in discharge state, but also in charge state

that can be treated as a load node, Thus, its model can be described by (5).

4. Frequency synchronization and stability analysis of a power grid based on
complex network theory

We denote G = (v, ε,A) as the topology of a power grid, where v is the set
of nodes, ε is the set of transmission lines and A is the adjacency matrix. The
power grid includes n nodes and m transmission lines denoted as |v| = n, |ε| = m.
Then all the nodes can be denoted as {vG, vL, vD}, where vG represents the set of
the generator nodes, vL represents the set of the load nodes, and vD represents the
set of the RES nodes.

In order to describe the various types of grid nodes using a uniform matrix
form, we make the following transformation

P∗mi = Pmi − Ei
2Gii, i ∈ vG,

P∗Li = −PLi − Ei
2Gii, i ∈ vL,

P∗Di = ±PDi − Ei
2Gii, i ∈ vD,

(9)

Then Eqs. (3), (5) and (8) can be written as

Diθ̇i = P∗mi −
n∑

j=1
EiE j

∣∣∣Yi j

∣∣∣ sin(θi − θ j), i ∈ vG,

Diθ̇i = P∗Li −
n∑

j=1
EiE j

∣∣∣Yi j

∣∣∣ sin(θi − θ j), i ∈ vL,

Diθ̇i = P∗Di −
n∑

j=1
EiE j

∣∣∣Yi j

∣∣∣ sin(θi − θ j), i ∈ vD,

(10)
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Define
ai j " EiE j

∣∣∣Yi j

∣∣∣ , {i, j} ∈ ε, (11)

so we can rewrite the model in Eq. (10) in the following form

Diθ̇i = P∗i −
n∑

j=1

ai j sin
(
θi − θ j

)
, i ∈ v, (12)

The above equation is described by using the following Laplacian matrix notation,

Dθ̇ = P∗ − BW sin
(
BTθ

)
, (13)

where θ = [θ1, ..., θn]T , D = [D1, ...,Dn]T , P∗ = [P∗m1, ..., P
∗
|vG |, P

∗
L1, ..., P

∗
|vL |, P

∗
D1, ...,

P∗|vD |]
T , B and W are the incidence matrix and weighted matrix, respectively.

To achieve a stable frequency synchronization solution in a power grid, firstly,
it is necessary for the synchronization solution of Eq. (13) to exist, and secondly,
the synchronization solution needs to guarantee to be stable.

A solution θ of Eq. (12) is said to be synchronized if θ̇i = θ̇ j for each node,
so the frequency difference between two arbitrary nodes can be represented as
follows

θ̇i − θ̇ j =
P∗i
Di
−

P∗j
D j
−

n∑

k=1

(
aik

Di
sin (θi − θk) −

ajk

Dj
sin

(
θ j − θk

))
, i, j ∈ v. (14)

To achieve frequency synchronization in power grid, the coupling strength be-
tween nodes i and j has to dominate the networks non-uniformity as shown in Eq.
(15)

P∗i
Di
−

P∗j
D j
<

n∑

k=1

(
aik

Di
sin (θi − θk) −

ajk

Dj
sin

(
θ j − θk

))
, i, j ∈ v. (15)

By a scale transformation of inequalities (15), we get

Γmin sin (γ) # Γcritical, (16)

where Γmin = n min
i! j

{ ai j

Di

}
, Γcritical = max

i! j

∣∣∣∣
P∗i
Di
− P∗j

D j

∣∣∣∣. There exists the frequency

synchronized solution if the inequalities in Eq. (16) is satisfied.
The synchronization frequency can be obtained by summing all the rows of

the matrix equation, Eq. (13), such that
n∑

i=1

Diθ̇i =
n∑

i=1

P∗i +
n∑

i=1

n∑

j=1

ai j sin
(
θi − θ j

)
. (17)
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Assuming that there is the synchronization frequency ωsync, the non-symmetric

property of the sine function implies that the last term
n∑

i=1

n∑
j=1

ai j sin
(
θi − θ j

)
is zero,

then, ωsync =
n∑

i=1
P∗i

/
n∑

i=1
Di.

After obtaining the synchronization solution, we need to analyze the stability
of this solution. To prove the stability of the synchronized solution of Eq. (13),
we consider the derivative of Eq. (12)

θ̈i = −
n∑

j=1

ai j

Di
cos

(
θi − θ j

) (
θ̇i − θ̇ j

)
(18)

By defining αi j
∗ =

ai j

Di
cos

(
θi − θ j

)
, we rewrite Eq. (18) as

θ̈i = −
n∑

j=1

αi j
∗
(
θ̇i − θ̇ j

)
(19)

The Laplacian matrix form of Eq. (19) is

θ̈ = −L (t) θ̇, (20)

where L(t) = diag
(

n∑
j=1
αi j
∗
)
−

{
αi j
∗
}

is the Laplacian matrix, diag
(

n∑
j=1
αi j
∗
)

repre-

sents a diagonal matrix whose main diagonal entries are
n∑

j=1
αi j
∗, and

{
αi j
∗
}

repre-

sents a matrix with all entries being αi j
∗.

Obviously the form of Eq. (20) is similar to the form of the consensus protocol
of the linear time invariant multi-agent system shown in Eq.(2). So we use Lemma
1 to analyze the stability of the frequency synchronization solution of a power
grid.

Theorem 1. Consider the power system (13), if θ (0) ∈ ∆ (γ), γ ∈ [
γmin, π/2

]
,

then there exists the synchronization frequency, where γmin = arcsin (Γcritical/Γmin).
Furthermore, assuming that the network is globally reachable for all time and
that all but one of the eigenvalues of the time-varying Laplacian matrix −L (t)
have strictly negative real part, the only exception is the trivial eigenvalue at zero,
if ∆ (γ) is positively invariant, and the synchronization frequency is stable, then
the frequency θ̇i (t) exponentially converges to the following common value: θ̇∞ =

ωsync =
n∑

i=1
P∗i

/
n∑

i=1
Di.
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Proof: Note that

γmin = arcsin
(
Γcritical

Γmin

)
. (21)

Then,
sin (γmin) =

Γcritical

Γmin
. (22)

Since for γ ∈ [
γmin, π/2

]
, sin(γ) is strictly monotonously increasing on the interval

[0, π/2), then

sin (γ) # sin (γmin) =
Γcritical

Γmin
(23)

Due to Γmin > Γcritical > 0, Eq. (16) holds from the fact that it can be de-
rived by multiplying both sides of Eq. (23) by Γmin, consequently, there exists a
synchronization frequency.

If all but one of the eigenvalues of the time-varying Laplacian matrix −L(t)
of Eq. (20) have strictly negative real part, and the only exception is the trivial
eigenvalues at zero, we have

−L (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
n∑

j=1, j!i

ai j

Di
cos

(
θi − θ j

)
, i = j

ai j

Di
cos

(
θi − θ j

)
, i ! j.

(24)

Therefore, −L(t) must be a Metzler matrix with row sum being zero (i.e, −L(t)
is the matrix whose all main diagonal elements are negative and all off-diagonal
elements are non-negative). According to Eq. (21), for t > 0, the following
inequalities holds

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
n∑

j=1, j!i

ai j

Di
cos

(
θi − θ j

)
! 0

ai j

Di
cos

(
θi − θ j

)
# 0.

(25)

Because of ai j

Di
# 0, ∀i, j, then the term cos

(
θi − θ j

)
# 0, ∀i, j is true, that is

γ ∈ [
γmin, π/2

]
,
∣∣∣θi − θ j

∣∣∣ ! γ for t > 0, so the set ∆ (γ) is positively invariant, and
the synchronization frequency is stable.

The conditions for the existence of synchronization solution given in [3] is
described as follows: γ ∈ [

γmin, π/2
]
, γmin = arcsin (Γcritical/Γmin), then the set ∆ (γ)
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is positively invariant. However, Theorem1 in this work shows that, when the
conditions given in [3] are satisfied, the existence of synchronization solution of
the system can be proved, but the stability of this solution cannot be guaranteed. In
this paper, assuming that the network is globally reachable for all time and that all
but one of the eigenvalues of the time-varying Laplacian matrix −L(t) have strictly
negative real part, the only exception is the trivial eigenvalues at zero; therefore,
the set ∆ (γ) is positively invariant, and the synchronization frequency is stable.
Our Theorem in this paper gives supplementary information for the stability of
the the frequency synchronization solution. The following simulation examples
validate the applicability of this Theorem.

5. Model simulation and analysis

1 

2 

4 

7 8 9 

5 6 
3 

Figure 1. The grid topology of the Western System Coordinating Council

The grid topology of the Western System Coordinating Council (WSCC 9-
BUS)[14] is shown in Fig. 1, where buses 1, 2 and 3 connected to generators is
treated as generator nodes, buses 5, 6 and 8 connected to loads can be viewed as
load nodes, buses 4, 7 and 9 are transformer buses, and can be treated as single
paths. We thus obtain a 6-node network model. Additionally, we assume that
there are three generator nodes, where node 1 is the classical generator node,
node 2 is the renewable energy node, and node 3 is the storage node that operates
in discharging state. The nodes parameters and lines parameters of the Western
System Coordinating Council in the simulations are given in Tables 1 and 2. From
Table 2, the branch resistance value is an order of magnitude smaller than the
branch reactance value.
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Table 1: The nodes parameters of the Western System Coordinating Council

Node Number Node Voltage Node Power Node Damping
U(p.u.) δ(◦) P(p.u.) D(p.u.)

1 (Bus 1) 1.0400 0 16.30 0.2
2 (Bus 2) 1.0250 9.2800 8.00 0.1
3 (Bus 3) 1.0250 4.6648 0.85 0.1
4 (Bus 4) 0.9956 -3.9888 -1.00 0.1
5 (Bus 5) 1.0127 -3.6874 -0.90 0.1
6 (Bus 6) 1.0159 0.7275 -0.80 0.1

Table 2: The line parameters of the Western System Coordinating Council

Source Node Sink Node Branch Resistance Branch Reactance
1 4 0.0100 0.2034
1 5 0.0170 0.2104
2 4 0.0320 0.3433
2 6 0.0085 0.2543
3 5 0.0390 0.4099
3 6 0.0119 0.2708

We can calculate from the parameters to obtain: Γmin = n min
i! j

{ ai j

Di

}
= 598.9573,

Γcritical = max
i! j

∣∣∣∣
P∗i
Di
− P∗j

D j

∣∣∣∣ = 91.5, γmin = arcsin
(
Γcritical
Γmin

)
= 8.7872◦and γ = max

i! j
|θi(0)−

θ j(0)| = 13.269◦. Since γ ∈ (γmin, π/2), according to Theorem 1, there exists the
frequency synchronized solution, since Laplace matrix L(t) is time-varying, its
eigenvalues change as well, where αi j

∗ =
ai j

Di
cos

(
θi − θ j

)
. Figure 2 (b) illustrates

that the largest eigenvalue of −L(t) is zero before 9 seconds, after 9 seconds, the
maximum eigenvalue of the system is far greater than zero, which does not satis-
fy the stability condition given by Theorem 1. Figure 2 (c) illustrates the phase
differences divergence. Therefore, although there exists a frequency synchroniza-
tion solution, the solution is unstable. Thus the system does not obtain the stable
synchronization frequency as shown in Figure 2 (a).

In Figure 3 the simulation parameters are changed. The damping vector is D =
[2, 1, 1, 1, 1, 1]T . The injection power P = [1.63, 0.8, 0.85, −1,−0.9,−0.8]T . The
simulation results are shown in Figure 3. In this case we have Γmin = n min

i! j

{ ai j

Di

}
=

59.986, Γcritical = max
i! j

∣∣∣∣
P∗i
Di
− P∗j

D j

∣∣∣∣ = 1.85, γmin = arcsin
(
Γcritical
Γmin

)
= 1.77◦ and γ is the
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Figure 2. Subplots (a), (b), (c) illustrate the nodes frequency variation,
the largest eigenvalue of −L(t) and the node phase variation of the West-
ern System Coordinating Council, respectively. Simulation results using D =
[0.2, 0.1, 0.1, 0.1, 0.1, 0.1]T and P = [16.3, 8, 0.85,−1,−0.9,−0.8]T .

same as that in Figure 2.
For γ ∈ (γmin, π/2), there exists a frequency synchronization solution. More-

over, the largest eigenvalue of −L(t) is always zero and others are smaller than
zero, which satisfies the stability condition given by Theorem 1, the set ∆ (γ) is
positively invariant. Fig. 3 (c) illustrates that the phase difference between ar-
bitrary two nodes converges, that is, the synchronization frequency is stable for
these parameters. Therefore, the solutions of the system exponentially converge to
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Figure 3. Subplots (a), (b), (c) illustrate the nodes frequency variation, the largest
eigenvalue of −L(t) and the node phase variation of Western System Coordinating
Council, respectively. Simulation results using D = [2, 1, 1, 1, 1, 1]T and P =
[1.63, 0.8, 0.85,−1,−0.9,−0.8]T .

stable synchronization frequency in Figure 3 (a). In another words, the frequency

of all nodes converge to the stable value θ̇∞ =
n∑

i=1
P∗i

/
n∑

i=1
Di.

The North Local Power Grid of Shannxi Province with 58 generator nodes and
57 load nodes is used to verify Theorem 1 in this paper. The nodes data and branch
data can be found in Appendix C, where the node type 1 (node type 2) means the
node is a generator (a load). We can calculate from the parameters in Appendix C
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and obtain Γmin = n min
i! j

{ ai j

Di

}
= 11.0764, Γcritical = max

i! j

∣∣∣∣
P∗i
Di
− P∗j

D j

∣∣∣∣ = 4.3505, γmin =

arcsin
(
Γcritical
Γmin

)
= 23.1246◦ and γ=max

i! j

∣∣∣θi (0) − θ j (0)
∣∣∣ = 60.2112◦.Obviously, for

γ ∈ (γmin, π/2), there exists a frequency synchronization solution. Moreover, as
shown in Figure 4 (b), the largest eigenvalue of −L(t) is always zero and oth-
er eigenvalues are smaller than zero, which satisfies the stability condition giv-
en in Theorem 1, the set ∆ (γ) is positively invariant. Figure 4 (c) illustrates
that the phase difference between arbitrary two nodes converges, that is the syn-
chronization frequency is stable under these parameters. Therefore, the solu-
tions of the system exponentially converge to stable synchronization frequency
as shown in Figure 4 (a). In Figure 5, the simulation parameters are changed.
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Figure 4. Subplots (a), (b), (c) illustrate the nodes frequency variation, the largest
eigenvalue of −L(t) and the node phase variation of the North Local Power Grid
of Shannxi Province, respectively. Simulation results using the parameters in Ap-
pendix C
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The damping of all nodes are the same as those in Appendix C, but the pow-
er of all the nodes are 5 times larger than those in Appendix C. In this case we
have Γmin = n min

i! j

{ ai j

Di

}
= 11.0764, Γcritical = max

i! j

∣∣∣∣
P∗i
Di
− P∗j

D j

∣∣∣∣ = 8.8901, γmin =

arcsin
(
Γcritical
Γmin

)
= 53.3825◦ and γ=max

i! j

∣∣∣θi (0) − θ j (0)
∣∣∣ = 60.2112◦.According to

Theorem1, there exists the frequency synchronization solution, since Laplace ma-

trix L(t) = diag
(

n∑
j=1
αi j
∗
)
−

{
αi j
∗
}

is time-varying, its eigenvalues change as well,

where αi j
∗ =

ai j

Di
cos

(
θi − θ j

)
. Figure 5 (b) illustrates that the largest eigenvalue

of −L(t) is zero before 4.8 seconds, after 4.8 seconds the maximum eigenvalue
of the system is greater than zero, which does not satisfy the stability condition
given in Theorem 1. As shown in Figure 5 (c), the phase differences are divergent.
Therefore, although there does exist the frequency synchronization solution, the
solution is unstable. Thus the system does not obtain the stable synchronization
frequency as shown in Figure 5 (a).

6. Conclusions

The models of generator and load nodes, according to rotor dynamics of the
generator and the RES nodes and equipped with power-frequency droop inverter
controllers, are given in this paper, where the storage nodes have two operating
states. We proved that the stability of synchronization solutions depends on the
Laplacian matrix −L(t) given in Eq. (20), using the consensus protocol of the
linear time-varying multi-agent system. If all but one of the eigenvalues of the
time-varying Laplacian matrix −L(t) have strictly negative real part, and the only
exception is the trivial eigenvalue at zero, then ∆ (γ) is positively invariant and the
synchronization solutions is stable. Simulation examples validate the applicability
of this Theorem using the power grid of the Western System Coordinating Council
and the North Local Power Grid of Shannxi Province.
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Figure 5. Subplots (a), (b), (c) illustrate the nodes frequency variation, the largest
eigenvalue of −L(t) and node phase variation of the North Local Power Grid of
Shannxi Province, respectively. Simulation results using the node power parame-
ters which are 5 times larger than those in Appendix C
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Appendix A.

The motion equation of the generator rotor is governed by

Jδ̈ = Ta, (A.1)

where δ is the mechanical angle of the shaft in radians with respect to a fixed
reference, J is the moment of inertia of the rotor in kg.m2, and Ta is the sum
torque in Newton meters.

Jδ̈ = Tm − TL

Jδ̈ = Tm − (Te + Td)
.

(A.2)

The angular reference is chosen with respect to a synchronously rotating reference
frame, then

δ = ωRt + θm, (A.3)

δ̇ = ωR + θ̇m = ωR + ωm

and δ̈ = θ̈m = ω̇m,
(A.4)

where θm is the mechanical angle of the shaft in radians with respect to a syn-
chronously rotating reference frame, θ̇m is the angular velocity of the shaft, ωR is
synchronously rotating angular velocity.

Another form of (A.2) is obtained by multiplying its both sides with ωm, as
shown by Eq. (A.5)

Jωmθ̈m = Pm − PL

Mθ̈m = Pm − PL,
(A.5)

where Pm = Tmωm is the mechanical power, PL = TLωm is the load power. The
quantity Jωm is called the inertia constant and is denoted by M, it is related to
kinetic energy of the rotating masses Wk, where Wk =

1
2 Jω2

m. Then M can be
calculated as follows

M = Jωm =
2Wk

ωm
. (A.6)
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The electrical angle θe can be used to denote all of the equations above,

θ = θe =
p
2
θm, (A.7)

where p is the number of pole pairs of the (generator) motor, which is calculated
as follows

p =
120 fR

nR
, (A.8)

where, nR is the rated shaft speed in rad/min, fR is the synchronously rotating
frequency in Hz.

The equation (A.1) can be equivalently written as
(
2J
p

)
θ̈ =

(
2J
p

)
ω̇ = Ta( N ·m). (A.9)

Now, normalize Eq. (A.9) by dividing both sides by a constant equal to the rated
torque at the rated speed

TB =
S B3

ωmR
=

60S B3

2πnR
, (A.10)

where S B3 is the rated three-phase power (VA),ωmR = 2πnR/60 is the rated angular
velocity of the shaft.

According to Eqs (A.8)-(A.10), we have
(

Jπ2n2
R

900ωRS B3

)
ω̇ =

Ta

TB
= Tau p.u., (A.11)

where Ta
TB
= Tau. The moment of inertia J = 746(WR2)

500g can be obtained by using the
method in [14], and

(
WR2

)/
g is the unit of J. Then, by the following transforma-

tion
746

(
WR2

)
π2n2

R

550g × 900ωRS B3
ω̇ = Tau p.u. (A.12)

Wk =
1
2

Jω2
m =

1
2
×

746
(
WR2

)

550g
× (2πnR)2

3600
=

746
(
WR2

)
π2n2

R

550g × 1800
(A.13)

H " Wk

S B3
, (A.14)

we have (
2Wk

S B3ωR

)
ω̇ = Tau p.u.. (A.15)
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(
2H
ωR

)
ω̇ = Tau p.u.. (A.16)

For a classical model of the synchronous machine, recognizing that the angular
speed is nearly constant, the accelerating power Pa in p.u. is nearly equal to the
accelerating torque Ta

[14], then the generator becomes
(
2H
ωR

)
ω̇ " Pa p.u.. (A.17)

In addition, the damping torque (damping power) includes both the mechani-
cal and electrical damping, which is represented by Dω, then (A.17) can be rewrit-
ten as (

2H
ωR

)
ω̇ = Pm − Pe − Pd = Pm − Pe − Dω pu, (A.18)

where Pd = Dω is the damping power. The concrete formula of the electrical
output power Pe of the generator is derived as follows. Consider a power sys-
tem consisting of one machine connected to an infinite bus through a transmission
line. A schematic representation of this case is shown in Figure A. 1 (a), E is the
internal voltage of the synchronous machine, L is the equivalent inductance of the
transmission line, and V is the voltage of the infinite bus, which is used as refer-
ence. The equivalent electrical circuit of the system is given in Figure A. 1 (b),
E = E∠δ is the voltage vector of the synchronous machine and δ is the voltage
phase, and V = V∠0 is the voltage vector of the infinite bus, x′d is the transient
reactance of the machine, V̄t is the terminal voltage of the synchronous machine,
which can be eliminated by using Y −∆ transformation, Z̄s is the equivalent shunt
impedance at the machine terminal, and Z̄T L is the series impedance of the trans-
mission line. Another equivalent circuit of Figure 1 (b) is given in Figure A. 1 (c)
by a Y − ∆ transformation.

Assumptions for deriving the model are the following: 1) The mechanical
power input remains constant during the transient period. 2) Damping or asyn-
chronous power is negligible. 3) The synchronous machine can be represented by
a constant voltage source and its mechanical angle coincides with the electrical
phase angle of the voltage. 4) If a local load is fed at the terminal voltage of the
machine, it can be represented by a constant impedance to neutral point.

In Figure A. 1 (a) we define: Nodes 0, 1 and 2 are the reference nodes, the
internal voltage node of the synchronous machine and the infinite bus node, re-
spectively; y10, y12, y20 are the three admittance elements , respectively, derived
by using a Y − ∆ transformation.
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(a) A schematic representa-
tion of one machine connect-
ed to an infinite bus through
a transmission line

(b) The equivalent electrical circuit of
one machine connected to an infinite bus
through a transmission line

1 2 

0 

  10 y 

  12 y 

  20 y 

  1 I   2 I 

  E   V 

(c) Another equivalent circuit of one machine connected to an
infinite bus through a transmission line

Figure A1. One machine connected to an infinite bus through a transmission line

The symbols with an arrow in the following equations are the vector variables
corresponding to the Figure A. 1 (c). For node 1, according to Kirchhoff’s law,
we obtain:

I1 = (E − V) y12 + Ey10 = Ey12 − Vy12 + Ey10 = E (y12 + y10) − Vy12. (A.19)

Define:
Y11 = Y11∠θ11 = y12 + y10, θ11 = arctan

(
real(Y11)
imag(Y11)

)

Y12 = Y12∠θ12 = −y12, θ12 = arctan
(

real(Y12)
imag(Y12)

)
.

(A.20)

Then,
I1 = EY11 + VY12 = EY11e j(δ+θ11) + VY12e jθ12 . (A.21)
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So the power input Pe at node 1 is

Pe = real
(
EI∗1

)
(A.22)

EI∗1 = Eejδ
(
EY11e− j(δ+θ11) + VY12e− jθ12

)
= E2Y11e− jθ11 + EVY12e− j(θ12−δ) (A.23)

Pe = real
(
EI∗1

)
= E2Y11 cos θ11 + EVY12 cos (θ12 − δ) . (A.24)

When the voltage angle of the infinite bus is different from zero, we can also get
the corresponding Pe, given as

Pe = real
(
EI∗1

)
= E2Y11 cos θ11 + EVY12 cos (θ12 + α − δ) . (A.25)

Now, we get the compact formula of the electrical output power of the generator as
Eq. (A. 25). Define β = π2 −θ12 and G11 " Y11 cos θ11, G11 is the self-conductance,
then Eq.(A. 25) is written as

Pe = E2G11 + EVY12 sin (δ − α + β) . (A.26)

Consequently, we can get the mathematical model of the generator node in the
power system [14] as

(
2H
ωR

)
ω̇ = Pm − Pd − Pe = Pm − Dω − E2G11 − EVY12 sin (δ − α + β) . (A.27)

In nodes power grid, the dynamic models of the generator nodes can be written as

(
2Hmi

ωR

)
ω̇i = Pmi − Diωi −

⎛
⎜⎜⎜⎜⎜⎜⎝E2

i Gii +

n∑

j=1

EiE jYi j sin(δi − δ j + ϕi j)

⎞
⎟⎟⎟⎟⎟⎟⎠ . (A.28)

It can be also expressed as

Miθ̈i = Pmi − Diθ̇i −
⎛
⎜⎜⎜⎜⎜⎜⎝E2

i Gii +

n∑

j=1

EiE jYi j sin(θi − θ j + ϕi j)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (A.29)

where Miθ̈i is the inertial term. When frequency synchronization analysis of (A.
29) is carried out, the inertia term Miθ̈i can be omitted due to the fact that it only
affects the convergence time to synchronize the state but not its existence [14]. In
addition, the resistive component is much smaller than the inductive component
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of the generators output impedance and the line impedance, then ϕi j = 0. In
consequence, the dynamic models of the generator nodes is given by

Diθ̇i = Pmi −
⎛
⎜⎜⎜⎜⎜⎜⎝E2

i Gii +

n∑

j=1

EiE jYi j sin(θi − θ j + ϕi j)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (A.30)

where, in terms of node i, Di and Mi are the damping and inertia constants, re-
spectively, θi of node i is the angle of the shaft in radians with respect to a syn-
chronously rotating reference, ϕi j is the phase shifts caused by transfer conduc-
tance, Ei is the voltage magnitude of the synchronous machine, Yi j is the admit-
tance of the transmission line between nodes i and j, and Gii " Yii cos θi is the
self-conductance.

Appendix B.

The model for the droop controlled inverter connected RES node is the fol-
lowing.

Power grid typically contains a bank of RES nodes equipped with active power-
frequency droop inverter controllers operating in parallel. For the convenience of
analysis, using two inverters in parallel as an example, Figure A.2 is the equivalent
circuit for two inverters operating in parallel, where E1, E2 are the input voltage
and I1, I2 are the input current of inverter 1 and 2, respectively. Ri is the input
impedance of inverter i, jXi is the line impedance between inverter and bus, E is
the voltage of load bus, I0,Z0 are the load current and load impedance, respective-
ly, and δ1, δ2 are the voltage phase difference between inverter 1, 2 and the bus,
respectively. We get the inverter output active power from Figure B. 1.

Figure B1. The equivalent circuit of two inverters operating in parallel

Pi =
RiEiE cos δi − RiE2

X2
i + R2

i
+

XiEiE
X2

i + R2
i

sin δi, i = 1, 2. (B.1)
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Assume that the entire inverter system is inductive, the resistive portion of the
inverter output impedance and line impedance is much smaller than the inductive
portion, and assume that the two inverters output impedance are equal, i.e, R1 =

R2 ≈ 0, then Eq. (B. 1) can be equivalently transformed as

Pi =
EiE
Xi

sin δi, i = 1, 2. (B.2)

Compared with the load impedance, inverter source output reactance is very small,
so the output voltage phase angle difference δi is also very small. Then we have
sin δi ≈ δi, therefore Eq. (B. 2) can equivalently be given by :

Pi =
EiE
Xi
δi, i = 1, 2. (B.3)

Additionally, in a practical inverter system, the variation range of output voltage
amplitude is not large, which can be approximately viewed as a constant, then the
output power of inverter system is only related to the phase angle difference δi

∆Pi =
EiE
Xi
∆δi, i = 1, 2. (B.4)

Since the phase control is achieved by adjusting the output frequency, the output
frequency change of the inverter is ∆ fi =

∆ωi
2π =

∆δi
2π∆t , so we can change the inverter

output phase by adjusting the output frequency, thereby, altering the active power
output of the inverter.

Define
npi =

Xi

2πEiE
, (B.5)

where the parameter npi is referred to as the droop coefficient, then the frequency
droop control formula can be obtained

fi = f0i − npi Pi, (B.6)

where f0i is the output frequency of the inverter without load.

Appendix C.
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Table C.3: The nodes parameters of the North Local Power Grid of Shannxi
Province

Node Number Node type Node Voltage Node phase Node Power Node Damping
U(p.u.) δ(◦) P(p.u.) D(p.u.)

1 1 0.9259 -1.3448 0.4950 3
2 2 0.9492 -11.7136 -0.3658 2
3 1 0.9679 -13.8526 1.0000 3
4 2 1.0012 3.1051 -6.3509 2
5 2 0.6971 -2.4949 -0.8509 2
6 1 0.9543 5.0374 2.7000 3
7 1 1.1242 -8.9266 2.0000 3
8 2 0.8933 19.0851 -3.8909 2
9 2 1.0934 1.2223 -0.9609 2

10 2 1.0350 10.4703 -0.2609 2
11 2 0.9971 -2.2692 -0.2209 2
12 2 1.0182 -1.6250 -0.7609 2
13 2 0.8435 6.9005 -0.1809 2
14 1 0.9915 5.5576 0.7500 3
15 2 1.1604 -11.2026 -0.6309 2
16 2 1.0098 -15.3269 -0.2009 2
17 2 1.0041 -10.9787 -0.2409 2
18 1 0.9266 -14.1577 2.7000 3
19 2 0.9969 0.5957 -0.2109 2
20 2 1.0232 -4.1125 -0.2259 2
21 2 1.0426 -3.6801 -0.4809 2
22 1 0.9627 -13.6096 1.0000 3
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Node Number Node type Node Voltage Node phase Node Power Node Damping
U(p.u.) δ(◦) P(p.u.) D(p.u.)

23 1 0.9764 7.7957 1.0000 3
24 1 1.2024 4.3941 1.0000 3
25 1 0.7742 -0.8962 0.3000 3
26 2 1.2229 10.2118 -0.2409 2
27 2 1.0338 -8.7398 -0.4009 2
28 2 1.1000 4.1470 -2.0609 2
29 1 0.8336 3.4844 0.0200 3
30 2 0.9410 3.4925 -0.9609 2
31 2 0.9722 -7.2925 -0.2609 2
32 1 1.0423 3.2684 0.7200 3
33 1 0.8330 -5.1488 0.5000 3
34 1 1.0472 -8.9645 1.0000 3
35 1 0.8787 -12.0327 2.0000 3
36 1 1.0066 10.3782 1.0000 3
37 1 1.0652 -8.4594 0.3000 3
38 1 1.0327 -1.7291 0.5000 3
39 2 1.1083 -12.0865 -0.2009 2
40 1 1.1006 -2.9713 0.7500 3
41 2 0.9349 -32.3204 -0.2609 2
42 2 1.0257 -10.8696 -0.2009 2
43 2 0.9056 -14.2644 -0.2609 2
44 2 0.8678 -10.1445 -0.3209 2
45 2 1.0925 -2.1327 -0.2809 2
46 1 1.0000 -3.2535 0.3000 3
47 1 0.9945 19.4440 0.1200 3
48 2 1.0911 -5.7177 -0.5609 2
49 2 1.0595 -2.5003 -0.1809 2
50 2 1.0350 -15.6932 -0.2009 2
51 2 1.1250 -4.7738 -0.3109 2
52 2 1.0930 -13.3798 -0.3609 2
53 2 1.0240 0.3030 -0.2609 2
54 2 0.9310 8.5309 -0.3409 2
55 2 0.9348 4.0425 -0.5609 2
56 2 1.1192 -7.0062 -0.1809 2
57 2 0.8388 -16.3054 -0.2109 2
58 2 0.9976 14.6001 -0.2209 2
59 2 0.8051 20.5004 -0.4609 2
60 2 1.1020 1.2050 -0.6609 2

26



Node Number Node type Node Voltage Node phase Node Power Node Damping
U(p.u.) δ(◦) P(p.u.) D(p.u.)

61 1 1.0862 -9.8990 0.7400 3
62 1 1.0001 11.9777 0.7700 3
63 1 0.9929 -5.9266 0.4000 3
64 2 0.7514 -4.6981 -0.5609 2
65 2 1.0581 8.8638 -0.2009 2
66 1 0.7808 -13.8522 1.0000 3
67 2 0.7681 -19.5675 -0.2609 2
68 2 1.0080 4.2068 -0.6609 2
69 2 0.9052 4.0074 -0.4109 2
70 2 1.0411 0.9514 -0.2609 2
71 1 1.0677 4.9668 0.8000 3
72 1 1.0858 10.8224 0.3000 3
73 2 0.9309 9.7045 -0.3109 2
74 2 1.0449 -5.6857 -0.2209 2
75 2 1.0101 8.0997 -0.2209 2
76 1 1.0826 1.7325 0.6000 3
77 1 1.0536 -5.0554 0.2400 3
78 1 1.0898 -11.9331 0.5000 3
79 1 0.9868 6.4697 0.4500 3
80 1 0.9853 -3.5362 0.3000 3
81 2 1.1008 0.4643 -0.4009 2
82 2 0.7876 -7.9295 -0.4109 2
83 2 0.9495 -15.5051 -0.3609 2
84 1 0.8729 1.7159 0.5000 3
85 1 0.9617 -0.6214 0.5000 3
86 1 1.0649 11.9903 0.2400 3
87 1 1.0826 8.0170 0.5000 3
88 1 0.8985 10.5330 0.5000 3
89 1 0.9529 -7.4888 0.1200 3
90 1 1.0137 -9.3633 0.6000 3
91 1 0.9708 -12.6909 1.9000 3
92 1 1.0302 4.9798 0.4950 3
93 1 1.0400 27.8908 0.4950 3
94 1 0.9070 7.2757 1.2600 3
95 1 0.9823 -7.7306 0.0100 3
96 1 0.7868 8.3663 0.9500 3
97 1 1.1145 -11.2833 0.4950 3
98 2 0.9371 -14.2447 -2.0109 2
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Node Number Node type Node Voltage Node phase Node Power Node Damping
U(p.u.) δ(◦) P(p.u.) D(p.u.)

99 1 0.8796 7.1744 0.6000 3
100 1 0.9746 -7.7791 0.9900 3
101 1 0.8571 3.1599 0.4950 3
102 1 0.9979 14.0654 0.8000 3
103 1 0.9439 4.0112 1.0000 3
104 1 1.2178 9.2966 0.9900 3
105 2 1.1138 -16.0580 -1.9409 2
106 2 0.7503 6.6154 -1.1709 2
107 1 1.0441 21.3850 0.9900 3
108 1 0.8602 5.4114 0.9900 3
109 2 0.9745 -15.4088 -2.6309 2
110 1 1.0164 -2.0314 1.5750 3
111 1 1.0748 -4.9997 0.9900 3
112 2 0.9727 3.8302 -0.9943 2
113 2 1.1576 4.1204 -6.9009 2
114 1 0.9519 4.0549 0.4950 3
115 1 1.0328 -3.6378 0.9900 3

Table C.4: The line parameters of the North Local Power Grid of Shannx-
i Province

Source Node Sink Node Branch Reactance
1 104 0.0622
1 109 0.0748
1 111 0.0504
2 112 0.0662
3 112 0.0035
4 5 0.0322
4 7 0.0244
4 59 0.0030
5 7 0.0161
5 105 0.0480
6 113 0.0048
8 44 0.3945
8 53 0.1660
8 74 1.0158
8 83 0.1534
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Source Node Sink Node Branch Reactance
8 87 0.1127
9 14 0.0050
9 18 0.0032
9 20 0.0059
9 52 0.0830
9 59 0.0176
9 61 0.0145
9 62 0.0505
9 82 0.0302
10 11 0.6106
10 27 1.0279
10 30 0.1538
10 46 0.2120
10 68 0.1559
11 27 0.2406
11 30 0.0803
11 46 0.0496
11 72 0.0099
11 79 0.0154
12 17 0.0449
12 39 0.0160
13 74 0.1819
13 86 0.0314
13 109 0.0526
15 32 0.0409
15 65 0.6658
15 66 0.0517
15 69 0.1042
15 88 0.0040
16 41 0.0295
16 52 0.1940
16 67 0.0483
17 39 0.0656
17 40 0.0431
17 47 0.0115
17 57 0.0431
18 65 0.0865
18 69 0.1681
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Source Node Sink Node Branch Reactance
19 31 0.2210
19 86 0.0539
21 34 0.0014
21 48 0.0197
21 68 0.0208
21 113 0.0156
22 58 0.0177
23 67 0.0078
24 65 0.0064
25 50 0.0023
26 44 0.0647
27 30 0.6714
27 46 0.0835
27 68 0.0630
28 30 0.0088
28 76 0.0083
28 85 0.0071
29 30 0.0500
30 46 0.1385
30 50 0.0428
30 59 0.1369
30 67 0.0293
31 75 0.0061
31 81 0.0317
31 86 2.2736
31 109 0.0263
32 55 0.0638
33 41 0.0005
35 50 0.0004
36 69 0.0107
37 65 0.0008
38 42 0.0010
39 54 0.0171
39 80 0.0271
40 57 0.0442
40 60 0.0105
40 62 0.0182
41 48 0.0650
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Source Node Sink Node Branch Reactance
42 51 0.0257
42 78 0.0071
43 51 0.0050
43 74 0.0855
44 74 0.0768
44 83 2.0159
44 87 0.1698
45 49 0.0200
45 54 0.0399
48 64 0.0058
48 74 0.1036
48 113 0.0364
50 82 0.0293
51 68 0.0201
51 71 0.0053
51 74 0.0796
52 59 0.0374
52 61 0.0696
52 67 0.0483
52 73 0.0706
52 77 0.0055
53 70 0.0568
54 69 0.0371
55 73 0.0569
56 58 0.1162
56 81 0.1376
56 109 0.0979
58 68 0.0936
59 67 0.0516
60 62 0.0293
60 89 0.0061
62 82 0.0290
62 84 0.0004
63 107 0.0384
63 109 0.0022
65 66 0.0713
65 69 0.7989
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Source Node Sink Node Branch Reactance
66 69 0.0621
8 113 0.0428
74 83 5.1912
74 87 0.4373
81 109 0.0263
83 87 0.5760
90 105 0.0196
91 102 0.0044
92 97 0.0237
93 96 0.0089
94 96 0.0141
95 96 0.0283
96 101 0.0089
96 115 0.0089
97 98 0.0500
97 100 0.0889
98 99 0.0433

100 109 0.0320
100 114 0.0592
102 103 0.0500
103 106 0.0065
105 106 0.0500
108 109 0.1189
109 110 0.0141
112 113 0.0500
114 115 0.0500
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