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 2

 Blastomeres of early vertebrate embryos undergo numerous fate choices 

for division, motility, pluripotency maintenance and restriction culminating 2 

in various cell lineages. Tracing blastomere fate choices at the single cell 

level in vitro has not been possible because of the inability to isolate and 4 

cultivate early blastomeres as single cells. Here we report the 

establishment of single cell culture system in the fish medaka, enabling the 6 

isolation and cultivation of individual blastomeres from 16- to 64-cell 

embryos for fate tracing at the single cell level in vitro. Interestingly, these 8 

blastomeres immediately upon isolation exhibit motility, lose synchronous 

divisions and even stop dividing in ≥50% cases, suggesting that the widely 10 

accepted nucleocytoplasmic ratio controlling synchronous divisions in 

entire embryos does not operate on individual blastomeres. We even 12 

observed abortive division, endomitosis and cell fusion. Strikingly, ~5% of 

blastomeres in single cell culture generated extraembryonic yolk syncytial 14 

cells, embryonic stem cells and neural crest-derived pigment cells with 

timings mimicking their appearance in embryos.  We revealed the maternal 16 

inheritance of key lineage regulators and their differential expression in 

cleavage embryos. Therefore, medaka blastomeres possess the 18 

accessibility for single cell culture, previously unidentified heterogeneity in 

motility, division, gene expression and intrinsic ability to generate major 20 

extraembryonic and embryonic lineages without positioning cues. Our data 

demonstrate the fidelity and potential of the single cell culture system for 22 

tracking blastomere fate decisions under defined conditions in vitro.  

24 
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Numerous cell fate choices occur throughout the animal life. Early in 

development of diverse animal species, fertilization between a sperm and an egg 2 

leads to the totipotent zygote, which undergoes continuous divisions and lineage 

restrictions, producing an increasing cell number and creating many different cell 4 

types. A mammalian embryo undergoes two cell fate decisions until the 

blastocyst stage, generating two extraembryonic lineages, the trophectoderm (TE) 6 

and primitive endoderm (PE), and an embryonic lineage, the epiblast for the 

future body1. The epiblast is pluripotent and generates three germ layers 8 

(ectoderm, mesoderm and endoderm), neural crest (NC) and germline. It is a 

fundamental challenge in developmental biology when and how different cell 10 

fates are precisely determined and regulated. Fate tracing in vivo is powerful for 

analyzing cell fate choices in developing embryos and adult tissues2. Recently, in 12 

vitro fate tracing has been developed by using either whole embryos3 or pooled 

cell populations4-6. In no organism has it so far been possible to culture single 14 

blastomeres for extended period to trace cell fate choices. Here we chose 

medaka (Oryzias latipes) to establish a single cell culture system to trace 16 

blastomere fate choices in vitro. 

Medaka embryos are accessible for blastomere isolation 18 

Medaka is an excellent lower vertebrate model for embryonic development7, 

stem cell culture2,8-13 and has a unique embryology favoring blastomere isolation. 20 

In many fish species including zebrafish, early blastomeres undergo meroblastic 

cleavages atop but not through the yolk14, which are incomplete cell divisions and 22 

thus prevent blastomere isolation. In medaka, we found a seemingly intact yolk 
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membrane from the 2-cell stage onwards after in situ hybridization with antisense 

RNA probes against various genes such as boule and dazl15, mitf1 2 

(Supplementary Figure 1a-c) and vasa (Supplementary Figure 1g and h), which 

is easily separable together with the blastoderm from the yolk (Supplementary 4 

Figure 1d-f and i). To determine when the yolk membrane establishes its 

intactness, a fluorescent dye was microinjected into different positions of freshly 6 

fertilized eggs or one cell of the 2-cell embryos and the dye distribution was 

monitored at the 64-cell stage. The dye injected into the yolk near the cytoplasm 8 

at the animal pole was transported to the future blastoderm (Figure 1a), whereas 

the dye injected at the vegetal yolk was not (Figure 1b), and the dye injected into 10 

one cell of 2-cell embryos was restricted to daughter cells of the injected 

blastomere (Figure 1c). Taken together, a prominent yolk membrane is formed 12 

and acquires its structural and physiological integrity at the first cleavage, which 

allows for blastomere isolation in subsequent stages. 14 

Tracing fate choices of blastomere divisions in culture 

We chose medaka strain HB32C for cell isolation and culture, a permissive strain 16 

for blastula cell culture in gelatin-coated multiwell plates10. We first determined 

the developmental stages for the possibility and efficiency of single cell isolation 18 

and cultivation. Isolated cleavage blastomeres were capable of survival and/or 

proliferation in single cell culture, producing an efficiency of 26%, 49% and 67% 20 

for 16-, 32- and 64-cell blastomeres, respectively (Table 1). Thus, blastomeres 

can reliably be isolated from 16- to 64-cell stages for single cell culture under 22 

defined conditions. 
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We began with the 16-cell stage (Figure 1e) to examine cell divisions as 

the first fate choice of blastomeres. In many animals, both invertebrates and 2 

vertebrates including Xenopus16 and zebrafish14, all blastomeres until the 

midblastula transition undergo 10~12 abbreviated cycles of rapid synchronous 4 

cell divisions without G1 and G2 phases and motility16. The cause and 

mechanisms for cell synchrony of abridged divisions have been a mystery since 6 

long. In both Xenopus and zebrafish, rapid cleavages have been thought of as 

being controlled by a cytoplasmic clock, which operates independently of the 8 

nucleus but dependent on the nucleocytoplasmic ratio14,16. We found that 

medaka 16-cell blastomeres displayed considerable differences in morphology, 10 

with their diameters ranging from 50 μm to 100 μm (Figure 1f and Supplementary 

Figure 2a). Strikingly, blastomeres immediately upon isolation lost synchronous 12 

cell divisions and even stopped dividing, and exhibited motility as evidenced by 

movements and pseudopodia (Supplementary Figure 2; Supplementary Movie 1). 14 

Notably, motility was seen also in actively diving blastomeres (Supplementary 

Figure 2; Supplementary Movies 1 and 2). Within the first 2 hour of culture, we 16 

observed abortive cell divisions (Supplementary Figure 2a; Supplementary Movie 

1) and cell fusions between dividing and non-dividing blastomeres 18 

(Supplementary Figure 2e-h; Supplementary Movie 2). More importantly, we 

observed fast dividing, slow dividing and non-dividing blastomeres, with the fast 20 

dividing blastomere having completed four cycles of divisions within 2 h 

(Supplementary Figure 2e-h; Supplementary Movie 2), comparable to rapid 22 

cleavages in intact embryos17. Taken together, rapid division is maintained in one 
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or few blastomeres but lost in the remainder. The nucleocytoplasmic ratio 

controlling rapid synchronous divisions in entire cleavage embryos does not 2 

appear to operate on isolated single blastomeres in culture. 

We then seeded individual blastomeres in gelatin-coated 96-well plates for 4 

single cell culture (Figure 1d) to tracking behaviors for extended periods of time 

at the single cell level. To observe nuclear behaviors in more detail, we explored 6 

zygotic microinjection of RNA encoding a fusion between the histone 2B and 

green fluorescent protein (H2Bgfp) to visualize nuclei. This led to the 8 

identification of three major classes of 16-cell blastomeres (Table 1): 74% 

belonged to class I, which ceased cell divisions even after completion of one 10 

nuclear division (Figure 1g), 6% was class II that underwent endomitosis 

(Supplementary Figure 3), and 20% fallen into class III, which divided three or 12 

more times within 24 h of culture and produced daughter cells of both 

heterogeneous (Figure 1h) and homogeneous sizes (Figure 1i and j). We also 14 

observed incomplete divisions (Supplementary Figure 3a). In particular, certain 

blastomeres continued rapid divisions and formed a cluster of ~100 cells at 24 h 16 

of culture (Figure 1j). Clearly, blastomeres have the heterogeneity in division, 

suggesting again the presence of novel mechanisms in medaka other than the 18 

nucleocytoplasmic ratio. 

Tracing fate choices of blastomere lineage restriction in single cell culture 20 

We tested the usefulness of single cell culture for tracing blastomere fate choices 

in lineage restriction to the yolk syncytial layer (YSL), pluripotent embryonic stem 22 

(ES) cells and pigment cells. A medaka embryo at the morula stage has two cell 
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populations, the envelope layer (EVL) and deep cells. The deep cells are 

equivalent to the inner cell mass in mouse, which is then separated into the deep 2 

cell layer (DCL) and YSL during blastulation17. Therefore, a medaka blastula 

embryo is similar to a mouse blastocyst embryo in having three blastula lineages: 4 

EVL, DCL and YSL, which are equivalent to the mouse TE, epiblast and PE, 

respectively (Fig. 2a). Around 6.5 h post fertilization at the early blastula stage 6 

with ~1000 cells, YSL is seen as 4-5 layers of nuclei17, which became easily 

visible upon nuclear labeling by H2Bgfp RNA injection (Fig. 2b). The DCL 8 

contributes to the future embryo body and is capable of generating diploid and 

even haploid ES cell cultures10,11,13. Pigment cells originate from the NC, a 10 

transient population arising from the neural plate in vertebrate embryos, which 

migrate throughout the body to generate many other cell types18. NC is elusive 12 

for analyses of fate choices because of a transient and migratory nature. In 

medaka, pigment cells become visible at day 3 post fertilization8,11,17, which 14 

comprise black-pigmented melanophore and other chromatophores including the 

ridophore19, which in medaka is autofluorescent8,11.  16 

We found that daughter cells of certain 16-cell blastomeres were capable 

of generating YSL in single cell culture. As early as 4 h of culture, YSL precursors 18 

appeared as round and large-sized (~50 μm in diameter) cells, in which the 

syncytial cytoplasm was located peripherally and the nuclei were positioned 20 

centrally (Figure 2c). Subsequently, nuclei moved to the periphery and the 

cytoplasm moved to the center until 6 h of culture (Figure 2d). They developed 22 

into YSL cells until day 1, which had multiple prominent nuclei in the periphery 
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surrounding the centrally residing cytoplasm (Fig. 2e). The 16-cell blastomere-

derived YSL cells were indistinguishable from those from midblastula embryos in 2 

culture (Figure 2f). Interestingly, the YSL cytoplasm actively formed pseudopodia 

(Supplementary Figure 4; Supplementary Movie 3). Moreover, 16-cell 4 

blastomeres produced a cluster of actively dividing cells at day 1 post culture 

(Figure 1j), which eventually developed into compacted cells at day 3 (Figure 2g), 6 

phenotypically resembling ES cells10,13. At day 3, melanocytes began to appear, 

which exhibited the characteristics of NC-derived pigment cells, including a flat 8 

shape, pigmented granules and dendritic processes (Figure 2g). At day 4 of 

culture, iridocytes became clearly visible by autofluorescence (Figure 2h). We 10 

obtained similar results with 32-cell blastomeres (Supplementary Figure 5) and 

64-cell blastomeres (Supplementary Figure 6). Although the frequency of non-12 

dividing blastomeres decreased to ~50% for the 32- and 64-cell stages, the 

proportion of blastomeres capable of lineage restriction remained 4~6% from 16- 14 

to 64-cell stages (Table 1). Collectively, single 16- to 64-cell blastomeres 

possess the ability to generate extraembryonic YSL cells, ES cells and NC-16 

derived pigment cells. 

In single cell culture, YSL cells appeared at day 1 and pigment cells 18 

appeared at day 3, reminiscent of the timing of their appearance in developing 

embryos. Interestingly, only proliferative blastomeres were capable of generating 20 

ES cells, YSL and pigment cells; In contrast, non-dividing blastomeres did 

survive for up to 5 days of culture without showing any sign of differentiation 22 

(Supplementary Movie 4). These results point to the fidelity of in vitro lineage 
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tracing in single cell culture. Convincingly, the ability to generate major blastula 

lineages and differentiated pigment cells of the NC origin is intrinsic to 2 

blastomeres and present already at the 16-cell stage, prior to the separation into 

the three blastula lineages until the 1000-cell stage and far before the 4 

organogenesis stage when pigment cells become visible. 

Expression of key lineage regulators 6 

In order to determine the molecular basis of the inherent potential for ES cells, 

YSL and pigment cells, we analyzed the RNA expression of nanog, oct4 sox17 8 

and microphthalmia-associated transcription factor (mitf). nanog and oct4 are key 

pluripotency regulators in mouse20,21 and exhibit pluripotent expression in 10 

medaka22-24. Mouse sox17 is a key regulator of PE development25. Fish mitf is a 

master regulator of pigment cells of NC lineage26. In mice, only oct4 is maternally 12 

supplied21, whereas nanog20, sox1725 and mitf27 commence their expression at 

the 8-cell stage, 32-cell stage and around embryonic day 10, respectively. We 14 

found that the transcripts of medaka oct4 and nanog were maternally supplied 

and expressed in cleavage embryos (Supplementary Figure 7), consistent with 16 

their reported expression22-24 and the ES cell formation from cleavage 

blastomeres in single cell culture. Surprisingly, the transcripts of sox17 and mitf1 18 

(one of the two medaka mitf genes due to an ancient whole genome duplication 

event in the fish lineage) were also maternal and persistent in cleavage embryos 20 

(Supplementary Figures 1 and 8). More intriguingly, sox17 was predominant in 

central blastomeres of cleavage embryos (Supplementary Figure 8a and b), and 22 

became preferentially expressed in YSL cells when they are formed at the early 
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blastula stage (Supplementary Figure 8c) and marginal blastomeres that produce 

the embryonic endoderm28, whereas mitf1 distributed preferentially in peripheral 2 

blastomeres (Supplementary Figure 8d-f). Differences in temporospatial 

distribution becomes more evident after two-color fluorescent in situ hybridization 4 

(Figure 3), reinforcing the heterogeneity of blastomeres at the molecular level. 

Therefore, medaka 16-cell blastomeres already exhibit differential expression of 6 

lineage markers, in contrast to the mouse situation where all 16-cell blastomeres 

retain the ability to contribute to any of the three blastocyst lineages29 and show a 8 

similar gene expression profile30. Collectively, the intrinsic potential of early 

blastomeres to produce YSL, ES cells and pigment cells accompanies the 10 

expression of respective lineage markers. 

Discussion 12 

In this study, the establishment of a single blastomere culture system and its 

exploitation in tracing cell fate choices lead to twelve important findings that are 14 

novel or different from previous results obtained in whole embryos. First, we 

show in medaka that embryonic cells as early as the 16-cell stage can be 16 

robustly isolated without losing their viability and developmental potential. 

Conceptually, meroblastic cleavages in fish are thought to be incomplete due to 18 

the lack of an intact yolk membrane and thus prevent isolation of intact and viable 

blastomeres. Three lines of evidence point to the intactness of yolk membrane in 20 

early medaka embryos, leading to our choice for this organism for single 

blastomere isolation. In situ hybridization reveals that maternal RNAs often do 22 

not completely enter the cellular blastodisc but leave a substantial level in the 
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yolk to form an area beneath the blastodisc, indicating the presence of a barrier 

between the yolk and blastodisc as early as the 2-cell stage. Furthermore, the 2 

yolk membrane together with the blastoderm is easily separable from the yolk. 

Convincingly, fluorescent dye injected in the vegetal yolk completely remains in 4 

the yolk, demonstrating the physiological integrity of the yolk membrane. 

Therefore, medaka is unique among organisms with meroblastic cleavages in its 6 

accessibility for blastomere isolation at the cleavage stages. In this regard, 

mammalian embryos must be also accessible for blastomere isolation because of 8 

complete cleavages. Second, we show that early blastomeres can survive and 

divide in single cell culture in the absence of any feeder cells. Third, we reveal 10 

that early blastomeres manifest motility upon isolation, in contrast to previously 

described absence of motility in blastomeres until the midblastula stage in many 12 

egg-laying species including Xenopus31 and zebrafish14. Notably, only a subset of 

isolated 16-cell blastomeres exhibit pseudopod formation, while the remainder 14 

does not show this measure of motility during whole period of culture. It appears 

that isolation and cultivation allows for manifestation and easy detection of 16 

motility, rather than stimulating or inducing motility. Even after midblastula 

transition in zebrafish, pseudopodia appear in interphase but do not form during 18 

mitosis14. In medaka, pseudopodial formation has not been described before the 

midblastula stage. It is likely that rapid cleavage divisions and positioning in the 20 

embryo prevent pseudopodial formation and cell movement. In this study, even 

dividing blastomeres formed pseudopodia and moved round in culture, 22 

suggesting that mitotosis does not prevent cellular motility in vitro. Fourth, we 
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demonstrate the previously unidentified heterogeneity of blastomeres in 

morphology, motility, division, gene expression and more importantly, 2 

developmental potential in single cell culture. Fifth, our finding that ≥50% of 

16~64-cell blastomeres maintain a large size but stop dividing immediately after 4 

isolation indicates the presence of unknown mechanisms that regulate 

synchronous blastomere cleavages. In invertebrates and lower vertebrates 6 

including fish, it is widely accepted that all embryonic cells undergo rapid and 

synchronous divisions until the midblastula stage of ~2000 cells when the 8 

midblastula transition begins, and cell synchrony of continuous divisions has 

widely been thought of as being determined by the nucleocytoplasmic ratio14. It 10 

remains unknown why this ratio does not operate on isolated blastomeres. It is 

likely that the synchrony of rapid divisions requires cell-cell communications. 12 

Intriguingly, there are certain blastomeres that continue rapid divisions in single 

cell culture. Possibly, such blastomeres may initiate and orchestrate synchronous 14 

cleavage divisions via cell-cell interactions. Sixth, we have also observed 

abortive division, endomitosis and cell fusion in isolated blastomeres, which have 16 

not yet been described in early cleavage embryos of lower vertebrates. All these 

processes may each lead to higher ploidy levels in certain embryonic cells. We 18 

have previously reported the invariant presence of ~20% tetraploid subpopulation 

in medaka diploid ES cells derived from fertilization midblastula embryos10 and 20 

the presence of ~20% diploid subpopulation in medaka haploid ES cells derived 

from gynogenetic midblastula embryos13. Whether these variations are causative 22 

for the appearance of higher ploidy levels in ES cells remains unknown. Seventh, 
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we show in medaka that the extraembryonic YSL cells can intrinsically be 

specified from cleavage blastomeres. In mouse, the two earliest events leading to 2 

the separation of TE and PE have been found under the multifaceted regulation 

including cell polarity, position and gene expression1,29. Eighth, the single cell 4 

culture system revealed the dynamic process of YSL cell formation and the 

motility of YSL cytoplasm. In zebrafish, some marginal blastomeres are confluent 6 

with the yolk cell cytoplasm resulting from incomplete division collapse and 

deposit their nuclei and cytoplasm into the cytoplasmic cortex of the yolk cell, 8 

thereby forming the YSL, whose nuclei then undergo three to five rounds of 

endomitosis without cytokinesis14,32. In medaka, the YSL originates also from 10 

marginal blastomeres and its nuclei undergo endomitosis17, but apparently in the 

absence of cell fusion with the yolk, because the yolk membrane acquires its 12 

integrity already at the 2-cell stage and prevents the direct interaction, as we 

have shown in this study. The YSL is elusive for study due to difficulties in 14 

interfering specifically with YSL formation and morphogenesis32. Our 

observations make medaka model for experimental analyses of YSL formation 16 

and its separation from the pluripotent DCL. In addition, YSL formation in single 

cell culture will provide an excellent system to elucidate the mechanisms 18 

underlying endomitosis and its role in cell fate specification. Ninth, we show that 

certain 16-cell blastomeres have the potential to generate pluripotent ES cells, far 20 

before the blastula stage when deep cells are formed. This is different from the 

situation in mouse, where a pluripotent ground state is established in the inner 22 

cell mass and epiblast until the blastocyst stage33. Tenth, the fact that medaka 
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blastomeres even at as early as the 16-cell stage already possess the intrinsic 

ability to specify pigment cells as the representative NC derivatives suggest the 2 

cell-autonomous NC specification in this organism, which is in contrast to the 

widely accepted notion that NC is induced from the neural tube by BMP and Wnt 4 

signalings19,34. Eleventh, we show that key lineage regulators are maternally 

supplied in medaka, in contrast to their zygotic expression in mouse27. Finally, 6 

our observations that lineage formation in single cell culture is dependent on cell 

divisions and timings similar to developmental programs of a developing embryo 8 

strongly suggest the fidelity of the single cell culture system to recapitulate 

blastomere fate choices in vivo. 10 

Taken together, we have successfully developed a novel ability to isolate 

and cultivate individual blastomeres of early medaka embryos and investigated 12 

their fate choices. It is evident that the single cell culture system is ideal for fate 

tracing in vitro under defined culture conditions without an intact embryonic 14 

environment. Our success is ascribed to the blastomere accessibility for isolation 

and well-defined culture conditions10,13,35. We believe that this single cell culture 16 

system can be developed also in other organisms to trace the behaviors/fates at 

the single cell level in culture, offering invaluable lights on the mode, process and 18 

mechanisms of various cell fate choices. 

METHODS 20 

Embryo microinjection and cell culture. Embryos were microinjected with 50 

ng of H2Bgfp RNA at the 1-cell stage as described36. Embryo manipulation, cell 22 

isolation and culture were done essentially as described8,10-13. Briefly, embryos 
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were treated with proteinase K (10 mg/ml) for 60 min at 28°C to remove the 

attachment filaments, rinsed twice in phosphate-buffered saline (PBS) and 2 

sterilized in PBS-0.1% bleach for 2 min, and rinsed 5 times in PBS. Embryos 

were incubated in PBS and monitored for developmental stages under aseptic 4 

conditions. The chorion was manually torn with a pair of fine forceps at the 

vegetal half. For embryos at 32- and 64-cell stages, cells were dissociated by 6 

gentle pipetting. For embryos at the 16-cell stage, cells were individually 

dissociated by using a fine forceps to prevent damage. Healthy cells were 8 

seeded by pipetting into gelatin-coated 96-well plates containing 150 μl of ES cell 

culture medium ESM2. Within 10 min of seeding, the plates were monitored 10 

under an invert microscope to ensure that one cell was present each well. Cell 

growth, attachment, proliferation and differentiation were monitored at regular 12 

intervals of culture at 28°C in air. 

Procedures for fish maintenance, gene cloning, RNA synthesis and in situ 14 

hybridization were performed as described in Supplementary Methods. 

Full methods and associated references are available in the online version of 16 

the paper at http://www.nature.com/naturecellbiology/. 

Supplementary Information is linked to the online version of the paper at 18 

http://www.nature.com/naturecellbiology/. 
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Figure legends 20 

Table 1 | Efficiency and differentiation of single blastomere culture 

Figure 1 | Single cell culture. (a-c) Merged micrographs of live embryos. The 22 

physiological integrity of the yolk membrane (ym) is evidenced by the prevented 

distribution of injected red fluorescent dye from yolk to the cell mass. Vg 24 

transgenic embryos were injected with red fluorescent dye at the positions 

(arrows) and photographed at 32-cell stage. The GFP signal is from maternal 26 

expression from the vasa promoter. (a and b) Lateral views following yolk 

injection 5 min after fertilization near the blastoderm (bd; a) or at the vegetal pole 28 

(b). (c) Top view of one-cell injection at the 2-cell stage, showing the restricted 

dye distribution into descendents of the injected blastomere. ch, chorion; od, oil 30 

droplet; yk, yolk. An embryo is 1 mm in diameter. (d) Schematic illustration of 

single cell isolation and culture. Shown here is a 16-cell embryo for manual 32 

dissociation, and cells are individually seeded into 96-well plate, one cell one well. 
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Cell behaviors are regularly monitored. (e) 16-cell blastoderm. (f) Isolated 16-cell 

blastomeres, showing differences in size and transparency. (g-j) Heterogeneity of 2 

16-cell blastomeres. Embryos were microinjected with H2Bgfp RNA at the 1-cell 

stage for labeling nuclei (green). Three major classes of blastomeres are seen. 4 

Class I is yolky, actively forms pseudopodia (asterisks) without cell division (g). 

Class II undergoes endomitosis (see Supplementary Figure 3). Class III exhibits 6 

active divisions and produce daughter cells of heterogeneous sizes (h) and a 

homogeneous size (i and j) often capable of attachment (arrow) until day 1 of 8 

culture. Embryos are 1 mm in diameter. Scale bars, 50 μm. 

Figure 2 | Lineage tracing in vitro. (a) Medaka blastula lineages and mouse 10 

blastocyst lineages. (b) Early medaka blastula following zygotic injection of 

H2Bgfp RNA, showing YSL nuclei (green). Oil droplets (od) depict the vegetal 12 

pole. (c) YSL precursor at 4 h of culture. (d) Developing YSL cells at 6 h of 

culture. (e) YSL cells at day 1 of culture. Three nuclei (nu) are seen in a large-14 

sized cytoplasmic syncytium. (f) Control YSL cells from midblastula embryos at 

day 3 of culture. (g) ES cells and black pigmented melanocytes (mc) at day 3. (h) 16 

Yellow fluorescent iridocytes (ic). Scale bars, 50 μm. 

Figure 3 | RNA Expression of key lineage regulators.  After whole mount in 18 

situ hybridization with antisense RNA probes, the signals were detected by green 

(oct4 and mitf1) and red fluorescence (nanog and sox17), and the blastoderm 20 

were separated from the yolk for photography. Nuclei were stained blue with 

DAPI. (a) oct4 and nanog expression. (b-d) mit1 and sox17 expression at the 22 

16~32-cell stage (b), 32-cell stage (c) and 64-cell stage (d). Scale bars, 50 μm. 
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Table 1 | Efficiency and differentiation of single blastomere culture1) 

Stage Blastomere, n (%) Class, n (%)3) Daughter cells, n(%)4)

Seeded Survived2) I II III ES Pig YSL 
16-cell 194   50 (26±10.7) 37 (74±12.9) 3 (6±3.9) 10 (26±10.9) 3 (6) 3 (6) 3 (6) 
32-cell 206 100 (49±14.5) 50 (50±12.3) 4 (4±2.3) 46 (46±12.3) 5 (5) 4 (4) 4 (4) 
64-cell 224 150 (67±12.4) 77 (51±16.7) 6 (4±4.8) 67 (45±13.8) 9 (6) 6 (4) 6 (4) 
1) HB32 embryos with and without injection with H2Bgfp RNA at the 1-cell stage 
were dissociated for single cell culture at 16-, 32- and 64-cell stages. Data are 
presented as means ± s.d. from four independent experiments. 
2) Survival rate at 1 day post culture was derived by comparison to the number of 
cells seeded. 
3) Classes I, II and III are non-dividing, endomitotic and dividing blastomeres until 
1 day post culture. Percentages are derived by comparisons to the number of 
cells survived. 
4) Blastomeres that produced daughter cells containing embryonic stem (ES) 
cells, yolk syncytial layer (YSL) cells, and pigment cells (Pig; melanocytes and/or 
iridocytes) at 1-4 dpc. Percentages were derived by comparisons to the number 
of cells survived. 



Figure 1 | Single cell culture.

f

16-cell

dissociation

seeding

embryod

melanocyte

iridocyte
YSL

ES

growth & differentiation

1h

6h

24h

g h i j

*

*

*

*
*

* *

*

od

od

ch

ch

bd

yk

yk

bda

b

e

c

ym

blastomere

Single cell
culture

Cell fates

ym



Figure 2 | Lineage tracing in vitro. 
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Figure 3 | RNA Expression of lineage markers.
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