2,242 research outputs found

    Photonic crystal fiber half-taper probe based refractometer

    Get PDF
    A compact singlemode - photonic crystal fiber - singlemode fiber tip (SPST) refractive index sensor is demonstrated in this paper. A CO2 laser cleaving technique is utilised to provide a clean-cut fiber tip which is then coated by a layer of gold to increase reflection. An average sensitivity of 39.1 nm/RIU and a resolvable index change of 2.56 x 10-4 are obtained experimentally with a ~3.2 µm diameter SPST. The temperature dependence of this fiber optic sensor probe is presented. The proposed SPST refractometer is also significantly less sensitive to temperature and an experimental demonstration of this reduced sensitivity is presented in the paper. Because of its compactness, ease of fabrication, linear response, low temperature dependency, easy connectivity to other fiberized optical components and low cost, this refractometer could find various applications in chemical and biological sensing

    Angular momentum transport by thermal emission in black hole accretion disks

    Full text link
    We calculate the amount of angular momentum that thermal photons carry out of a viscous black hole accretion disc, due to the strong Doppler shift imparted to them by the high orbital velocity of the radiating disc material. While the emission of radiation can not drive accretion on its own, we find that it does result in a loss of specific angular momentum, thereby contributing to an otherwise viscosity-driven accretion flow. In particular, we show that the fraction of the angular momentum that is lost to thermal emission at a radius r in a standard, multi-color disc is ~ 0.4r_s/r, where r_s is the Schwarzschild radius of the black hole. We briefly highlight the key similarities between this effect and the closely related Poynting-Robertson effect.Comment: 6 pages, 2 figures; to appear in A

    A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure

    Get PDF
    A relative humidity (RH) sensor based on a simple singlemode-side polished multimode-singlemode (SSPMS) fiber hybrid structure is investigated, which is capable of working over a relatively high-temperature range, at which many RH sensors based on moisture sensitive material coatings cannot operate. The beam propagation method is used to analyze the light transmission characteristics within the side polished multimode fiber (SPMMF) structure. Experimental results show that the SPMMF surface roughness has a significant influence on the sensor\u27s humidity sensing performance, as a result of the adsorption and desorption of water molecules along the side polished surface. A higher surface roughness results in an increased RH sensitivity. It is concluded that the SSPMS fiber structure based RH sensor can achieve around 0.069 dB/%RH within the humidity range of 30%RH–90%RH for a temperature range of 70 °C to 90 °C. In addition, the temperature cross-sensitivity has been investigated experimentally. The developed fiber optic sensor in this investigation provides a simple and effective approach for RH measurement in a variety of production applications

    Lumped Time-Delay Compensation Scheme for Coding Synchronization in the Nonlinear Spectral Quantization-Based All-Optical Analog-to-Digital Conversion

    Get PDF
    this paper, we propose a novel lumped time-delay compensation scheme for the all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. By inserting a segment of negative dispersion fiber between the quantization and the coding module, the time delay of different quantized pulses can be accurately compensated with a simple structure compared to the multiple time-delay lines. The simulation results show that the coding pulses can be well synchronized using a span of fiber, with the flattened negative dispersion within the wavelength range of 1558-1620 nm. In addition, the problems of pulse broadening and time error are discussed, and it is shown that no damage happens to the coding correctness within the sampling rate of 30 GSa/s

    High Sensitivity Sol-Gel Silica Coated Optical Fiber Sensor for Detection of Ammonia in Water

    Get PDF
    A high sensitivity ammonia sensor based on a tapered small core singlemode fiber (SCSMF) structure for measurement of ammonia concentration in water is reported. Two tapered SCSMF fiber structures with different waist diameters of 23 µm and 13.5 µm are fabricated by using a customized microheater brushing technique. The silica based material prepared by the sol-gel method is used as a coating applied to the surface of the tapered fiber structures. To investigate the influence of the coating thickness on the sensitivity to ammonia in water, silica coatings with different thicknesses (2-pass and 8-pass coatings) are deposited on the surface of the fiber sensor with a waist diameter of 23 µm. Experiments demonstrate that the sensor with a thicker (8-pass) silica coating shows better sensitivity of 0.131 nm/ppm to ammonia compared to that of 0.069 nm/ppm for the thinner silica coating (2-pass). To further improve the sensor sensitivity, the taper waist diameter is reduced. For an 8-pass coating (249nm at the taper waist section) applied to a tapered SCSMF structure based fiber sensor with a reduced waist diameter of 13.5 µm. Experimental results show that the sensitivity to ammonia is significantly improved to 2.47nm/ppm. The best measurement resolution for ammonia concentration in water is estimated to be 4 ppb while the response and recovery times are less than 2 and 5 minutes respectively. The proposed sensor also offers good performance in terms of repeatability and good selectivity for sensing ammonia compared to that of other common ions and organic molecules in water

    Suppression of Raman Soliton Self-frequency Shift in Photonic Cystal Fibers with Tellurite Subwavelength Core

    Get PDF
    A new nonlinear evolution equation including the vector nature of the electromagnetic field and the frequency variation of the mode profile is derived. A kind of new nonlinearity is demonstrated. Its magnitude is strongly dependent on the waveguide geometrical parameters, which will lead to a suppression of the Raman soliton self-frequency shift in a photonic crystal fiber with a tellurite subwavelength core. Our results can be supported by the detailed numerical simulation

    High Sensitivity Sol-Gel Silica Coated Optical Fiber Sensor for Detection of Ammonia in Water

    Get PDF
    A high sensitivity ammonia sensor based on a tapered small core singlemode fiber (SCSMF) structure for measurement of ammonia concentration in water is reported. Two tapered SCSMF fiber structures with different waist diameters of 23 µm and 13.5 µm are fabricated by using a customized microheater brushing technique. The silica based material prepared by the sol-gel method is used as a coating applied to the surface of the tapered fiber structures. To investigate the influence of the coating thickness on the sensitivity to ammonia in water, silica coatings with different thicknesses (2-pass and 8-pass coatings) are deposited on the surface of the fiber sensor with a waist diameter of 23 µm. Experiments demonstrate that the sensor with a thicker (8-pass) silica coating shows better sensitivity of 0.131 nm/ppm to ammonia compared to that of 0.069 nm/ppm for the thinner silica coating (2-pass). To further improve the sensor sensitivity, the taper waist diameter is reduced. For an 8-pass coating (249nm at the taper waist section) applied to a tapered SCSMF structure based fiber sensor with a reduced waist diameter of 13.5 µm. Experimental results show that the sensitivity to ammonia is significantly improved to 2.47nm/ppm. The best measurement resolution for ammonia concentration in water is estimated to be 4 ppb while the response and recovery times are less than 2 and 5 minutes respectively. The proposed sensor also offers good performance in terms of repeatability and good selectivity for sensing ammonia compared to that of other common ions and organic molecules in water

    Two dimensional scaling of resistance in flux flow region in Tl2Ba2CaCu2O8Tl_2Ba_2CaCu_2O_8 thin films

    Full text link
    The resistance of Tl2Ba2CaCu2O8Tl_2Ba_2CaCu_2O_8 thin films has been measured when the angle between the applied fields and abab-plane of the film is changed continuously at various temperatures. Under various magnetic fields, the resistance can be well scaled in terms of the c-axis component of the applied fields at the same temperature in the whole angle range. Meanwhile, we show that the measurement of resistance in this way is a complementary method to determine the growth orientation of the anisotropic high-TcT_c superconductors.Comment: 11 pages, 8 figures. Have been published in Physica

    CMOS-compatible 2-bit Optical Spectral Quantization Scheme Using a Silicon-nanocrystal-based Horizontal Slot Waveguide

    Get PDF
    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W21 /m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems

    In-fiber temperature sensor based on green up-conversion luminescence in an Er3+-Yb3+ co-doped tellurite glass microsphere

    Get PDF
    A novel, to the best of our knowledge, in-fiber temperature sensor based on green up-conversion (UC) luminescence in an Er3+-Yb3+ role= presentation style= box-sizing: border-box; display: inline; font-size: 12.88px; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eEr3+-Yb3+Er3+-Yb3+ co-doped tellurite glass microsphere is described. The tellurite glass microsphere is located firmly inside a suspended tri-core hollow-fiber (STCHF) structure. The pump light launched via a single-mode fiber (SMF) is passed through a section of multimode fiber, which is fusion spliced between the SMF and the STCHF into the cores suspended inside the hollow fiber and coupled into the microsphere. Green and red UC emissions of the Er3+ role= presentation style= box-sizing: border-box; display: inline; font-size: 12.88px; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3eEr3+Er3+ ions are observed using 980 nm pump excitation. The temperature-sensing capability of the tellurite glass microsphere is based on the thermally coupled effect between the upper energy levels responsible for green emissions at 528 nm and 549 nm. The resulting fluorescence intensity ratio, depending on the surrounding temperature range from 303 K to 383 K, is experimentally determined, and a maximum sensitivity of 5.47×10−3  K−1 role= presentation style= box-sizing: border-box; display: inline; font-size: 12.88px; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e5.47×10−3  K−15.47×10−3  K−1 is demonstrated. This novel in-fiber microsphere-resonator-based device is highly integrated and has the additional advantages of ease of fabrication, compact structure, and low fabrication cost and therefore has great application potential in integrated optical sources including lasers
    • …
    corecore