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Suppression of Raman soliton self-frequency shift in
photonic crystal fibers with tellurite subwavelength core
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aBeijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communications, P.O. Box 163,
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Abstract. A new nonlinear evolution equation including the vector nature of the electromagnetic field and the
frequency variation of the mode profile is derived. A kind of new nonlinearity is demonstrated. Its magnitude is
strongly dependent on the waveguide geometrical parameters, which will lead to a suppression of the Raman
soliton self-frequency shift in a photonic crystal fiber with a tellurite subwavelength core. Our results can be
supported by the detailed numerical simulations. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.OE.53.5.056109]
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1 Introduction
Photonic crystal fibers (PCFs) have attracted great attention
due to their unique optical characteristics, such as tailored
dispersion and high nonlinearity, and so on.1–6 Several non-
linear effects, including self-phase modulation (SPM),
Raman-stimulated Raman scattering, Raman soliton self-fre-
quency shift (RSSFS), soliton fission, and the dispersive
wave in PCFs have been deeply studied for applications
in laser sources of different wavebands.7–12

Recently, because of the progress on new fabrication tech-
niques, lots of interests have been concentrated on the non-
silica glasses with wider infrared transmission windows,
such as tellurite, fluoride, and chalcogenide glasses.
Tellurite glasses possess a higher nonlinear refractive
index than that of silica glass by at least one order of mag-
nitude. Because of the huge relative index difference caused
by the tellurite glass core, the PCFs with the tellurite subwa-
velength core can form a very small effective mode area and
show a higher Kerr nonlinear coefficient. Moreover, the tel-
lurite glasses have good chemical and thermal stability.
Therefore, they become the suitable material for nonlinear
studies in the near-infrared region.13–15

The conventional generalized nonlinear Schrodinger
equation (GNLSE) can exactly analyze the pulse propagation
in PCFs with a larger core size on the assumption that the
longitudinal component of the electric field is beyond con-
sideration compared with the transverse components. When
the core diameter is sufficiently small or the refractive index
contrast between core and cladding is gradually increased,
the longitudinal component of the electric field of the fun-
damental mode becomes more obvious and must be consid-
ered in GNLSE. In a recent study, taking into account the
vector natures of electromagnetic field and the frequency
dependence of the fundamental mode in the photonic nano-
wires with a subwavelength core diameter, a new equation is
used to describe the pulse propagation.16 The simulation
results by the new propagation equation show the

suppression of a new nonlinearity on RSSFS by comparing
it with that obtained by the conventional GNLSE. However,
the PCF is based on silica in Ref. 16, which has a much lower
nonlinearity than that of tellurite glass. In order to ensure the
new pulse propagation equation and the numerical simula-
tions are more precise, a PCF with a nanoscale core formed
by the high index glass to enhance the new nonlinearity is
necessary. In addition, Ref. 16 just primarily studies the
self-frequency shift of high-order solitons, where the
influences of the pulse temporal width and transmission dis-
tance are not considered. Moreover, the very important
parameters of fiber absorption, the third-order dispersion
for the Raman soliton propagation, and the suppression
degree of RSSFS are not considered.

In this article, the pulse propagation inside the PCF with a
nanoscale tellurite glass core is studied. The z-component of
the electric field and the sensitivity of mode distribution on
the frequency are considered due to the tight field confine-
ment. The fiber absorption and the third-order dispersion
coefficient are taken into account to accurately show the evo-
lution of the short pulse inside the PCF. A kind of new non-
linear geometrical nonlinearity emerges. By adjusting the
PCF structure and decreasing the core size, the geometrical
nonlinearity can compete with the Raman effect in a specific
wavelength range. The suppression of the geometrical non-
linearity on the fundamental soliton is demonstrated based
on the new propagation equation. At different pulse powers,
pulse temporal width, and transmission distance, the sup-
pression of RSSFS is demonstrated.

2 Photonic Crystal Fiber Characteristics
The PCF structure designed is shown in Fig. 1(a), where
the red circle is the central core of the tellurite glass T2
[77TeO2-10Na2O-10ZnO-3PbO (%mol)],17 which has a
refractive index n ¼ 2.078 and a nonlinear index n2 ≈ 5.9×
10−19 m−1 W−1. n2 is almost 23 times larger than that of
silica. The blue cladding region with hexagon air holes is
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formed of silica. The structure parameters are as follows: the
pitch Λ ¼ 2.05 μm, the air hole diameter d ¼ 1.7 μm, and
the central core diameter dc ¼ 1.4 μm.

Figure 1(b) shows the fundamental mode intensity
kêðr⊥Þk inside the optical fiber at λ ¼ 1550 nm. Because
of the specific symmetry of PCF, the birefringence does
not exist in the waveguide. As seen from Fig. 1(b), because
of the large refractive index contrast between the tellurite
glass core and the silica cladding, the light energy is almost
confined to the central core region, and the z-component of
the fundamental mode turns out to be visible. Furthermore,
the mode profile changes obviously within a wavelength
range. This instability of the mode profile leads to the sup-
pression of RSSFS. This strong field confinement produces a
much smaller effective model field area and a larger Kerr
nonlinearity coefficient than that of a silica core.

Far away from the resonances of the medium, the refrac-
tive index of tellurite glass can be approximated by the
Sellmeier equation:

n2ðλÞ ¼ 1þ B1λ
2

λ2 − C1

þ B2λ
2

λ2 − C2

þ B3λ
2

λ2 − C3

; (1)

where B1, B2, B3, C1, C2, and C3 are the material constants.
For tellurite glass T2, these parameters are 0.71, 1.28, 1.28,
9.85 × 104 nm2, −3 × 104nm2, and −3 × 104 nm2.17 Using
the finite element method, the calculated group velocity
dispersion (GVD) curve is presented in Fig. 2, where the
first zero dispersion wavelength is 0.9 μm, and the second
one is beyond consideration.

Because the light is mainly confined to the tellurite core,
the material dispersion of tellurite glass T2 dominates the
vast majority of the dispersion. The holes in the cladding

can considerably modify the GVD. This PCF structure
can exhibit a wide region of anomalous dispersion and locate
the maximum of the geometrical nonlinear coefficient inside
the region of anomalous dispersion. This is very important
for observing the visible suppression phenomenon
of RSSFS.

We have analyzed many different fiber core materials and
fiber structures, and compared the optical properties such as
GVD, Kerr nonlinearity, and geometrical nonlinearity. Our
choice of core material and PCF parameters has been dic-
tated by two conditions which cannot easily be simultane-
ously met. The first requirement is that there must be a
relatively large refractive index contrast between the core
and cladding, so that the magnitude of the longitudinal com-
ponent of the electric field becomes appreciable. The second
requirement is that the holes should considerably modify the
GVD in such a way that the maximum of the geometrical
nonlinear coefficient is located inside the region of anoma-
lous dispersion. At last, we find that the designed fiber is the
most suitable to exhibit the suppression of RSSFS.

Defining the first moment of the nonlinear response func-
tion in tellurite glass as:

TR ¼ fR
d½ImhRðΔωÞ�

dðΔωÞ
����
Δω¼0

; (2)

where fR ¼ 0.51 represents the fractional contribution of the
delayed Raman response to the nonlinear polarization in tel-
lurite glass,18 hRðΔωÞ described in Ref. 17 is the Fourier
transform of the Raman response function hRðtÞ, and TR
is estimated to be 1.32 fs in the proposed PCF.

3 Theory Model for Pulse Propagation
In the derivation, the normalized field profile of fiber
eigenmodes êλðr⊥; λÞ is spread into a Taylor series at the cen-
tral wavelength λ0

êλðr⊥; λÞ ¼
X
j≥0

1

j!
fjλ0ðr⊥Þ

�
Δλ
λ0

�
j
; (3)

where Δλ is the wavelength detuning between λ and λ0.
fjλ0 ¼ ½λj0∂jêλðr⊥; λÞ∕∂λj�λ¼λ0

is the j’th term of Taylor
expansion. êλðr⊥; λÞ is a vector field and its z-component
is comparable with the other two transverse components

Fig. 1 (a) The structure of the proposed photonic crystal fiber (PCF),
and (b) the fundamental mode intensity at the wavelength of 1550 nm.

Fig. 2 Group velocity dispersion curve of the fundamental mode of
the proposed PCF.
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when the core diameter is sufficiently small or the refractive
index contrast between core and cladding is large enough.
Thus, the z-component must be taken into account. By
spreading the fiber eigenmodes into the Taylor series, the
z-component of electric fields can be well contained in
the derivation of GNLSE. Then, the derivation is the
same as Ref. 16.

A new pulse propagation equation in the PCF of silica
core is obtained:

i∂zAþDði∂tÞAþ γ0

��
1þ i

ω0

∂t
�
jAj2A − TRA∂tjAj2

�

þ 4iγ1
ω0

jAj2∂tA ¼ 0. (4)

Here, A is the electric field envelope, ω0 is the angular
frequency at λ0, Dði∂tÞ is the conventional fiber GVD, γ0
is the Kerr nonlinearity coefficient, and γ1 is the geometrical
nonlinearity coefficient,

γ1ðλ0Þ ¼
3

16ct0

Z
χð3Þxxxxðr⊥Þ½f�ð1Þλ0

fð0Þλ0
jfð0Þλ0

j2�dr⊥. (5)

Here, χð3Þxxxxðr⊥Þ is the third-order susceptibility deter-
mined by the transverse coordinates of the waveguide,
and t0 is the pulse duration.

It can be found from Eq. (4) that there is a new term of
geometrical nonlinearity compared to the conventional
GNLSE. This new term is deduced from the non-neglectful
z-component of electric fields and can give a suppression
of RSSFS.

Considering Eq. (4) in PCF with the tellurite core, two
improvements are made. First, because the tellurite glasses
have a higher fiber loss than that of silica glass, the fiber
loss α of the tellurite glass should be considered to ensure
the result to be more accurate. Second, only the first
three-order Taylor expansions are considered because the
pulse central wavelength is far away from the zero dispersion
wavelength of PCF.

By a few derivations, the final pulse propagation equation
in PCF with the tellurite subwavelength core is obtained as
the following

i
∂A
∂z

þ i
2
αA −

β2
2

∂2A
∂T2

−
iβ3
6

∂3A
∂T3

þ γ0

�
jAj2Aþ i

ω0

∂
∂T

ðjAj2AÞ − TRA
∂jAj2
∂T

�

þ 4iγ1
ω0

jAj2 ∂A
∂T

¼ 0; (6)

where α ¼ 2 dB∕m in the tellurite glass T2, and β2 and β3
are the second and third-order GVD coefficients. Other
parameters are defined the same as in Eq. (4).

The curves of γ0 and γ1 are presented in Fig. 3. Black and
red lines indicate that γ0 and γ1 are plotted versus wave-
length. It can be seen that γ0 decreases monotonically as
the radiation wavelength increases, while γ1 shows a differ-
ent trend. γ1 increases up to the maximum value at a wave-
length of 1.8 μm and reduces monotonically after that.

4 Suppression of Raman Soliton Self-Frequency
Shift

Now the influence of γ1 on the RSFS of solitons is shown. It
impacts on the soliton propagation and results in a suppres-
sion of the RSFS. A numerical simulation of the conven-
tional GNLSE in the same condition compared with
Eq. (6) is carried out, where the new geometrical nonlinearity
term is included.

The pump central wavelength is 1550 nm in the anoma-
lous dispersion region. With an input power P, the soliton
order number is N ¼ ½γ0Pt20∕jβ2j�1∕2. In the first simulation,
we use two different input pulses with the powers of 200 and
400 W, corresponding to soliton order numbers N ¼ 1 and 2.
L ¼ 0.2 m is the propagation distance. The input pulse is the
hyperbolic secant and has a temporal width t0 equal to
100 fs. Figure 4 shows the output spectrum of the input
pump pulse at different pump powers: (a) P ¼ 200,
N ¼ 1 and (b) P ¼ 400, N ¼ 2. The blue dashed line and
the red pecked line indicate the evolutions of the short pulses
in the proposed PCF.

In Fig. 4, compared to the results obtained by the GNLSE,
it can be clearly seen that the new geometrical nonlinearity
acts on the optical solitons and leads to a suppression of the
RSSFS. In Fig. 4(a), the central wavelength of the first-order
soliton by the GNLSE is 1680.9 nm, and the corresponding
central wavelength for the new equation is 1678.3 nm. There
is a suppression of 2.6 nm when taking the geometrical non-
linearity term into consideration. In Fig. 4(b), the central
wavelengths of the first- and second-order solitons by the
GNLSE are 1655 and 1725.2 nm, corresponding to 1651
and 1721.3 nm with the new equation. There are a 4-nm sup-
pression for the first-order soliton and a 3.9-nm suppression
for the second-order soliton. Also, the suppression degree for
P ¼ 400, N ¼ 2 is bigger than that for P ¼ 200, N ¼ 1.
Because the geometrical nonlinearity only induces a suppres-
sion on the soliton evolution, the soliton shape is the same as
the output by the GNLSE.

In the second simulation, two different hyperbolic secant
pulses with the temporal widths of 100 and 150 fs are used.
The input powers are 100 W, and the propagation distance
is 0.25 m.

Figure 5 shows the output spectra of the input pump pulse
at different temporal widths: (a) t0 ¼ 100 fs, N ¼ 1, (b)
t0 ¼ 150 fs, N ¼ 1. It is easy to see that the solitons propa-
gate the same distance at the different pulse durations. When

Fig. 3 Kerr nonlinearity coefficient and geometrical nonlinearity coef-
ficient in the designed PCF.
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the pump temporal width t0 ¼ 100 fs, the central wave-
lengths of solitons are 1634.9 and 1630 nm for the
GNLSE and the new equation, a 4.9-nm suppression emerg-
ing. When the pump temporal width t0 ¼ 150 fs, the central
wavelengths are 1638.5 and 1636.1 nm, and there is a 2.4-nm
suppression. When the temporal width is shorter, the sup-
pression phenomenon of RSSFS is more remarkable.

In the third simulation, we simulate the output spectra at
different transmission distances of 0.2, 0.4, and 1 m, respec-
tively. The input powers are 100 W, and the pump temporal
width is 100 fs. Figure 6 shows the output spectra for N ¼ 1
at (a) L ¼ 0.2 m, (b) L ¼ 0.4 m, and (c) L ¼ 1 m.
Corresponding to (a) L ¼ 0.2 m, (b) L ¼ 0.4 m, and (c)
L ¼ 1 m, the central wavelengths for the GNLSE are
1632.8, 1638.7, and 1639.9 nm, and the central wavelengths
for the new equation are 1628.6, 1635.5, and 1637.1 nm. The
suppressions of 4.2, 3.2, and 2.8 nm are obtained. When the
transmission distance increases from 0.2 to 1 m, the suppres-
sion is reduced to 2.8 nm. Due to the combined action of the
GVD and SPM, when the pulses are propagated in the wave-
guide, the soliton can be compressed. The suppression
degree of RSSFS is more visible as L increases.

5 Discussion on Fabrication
In the actual case, it is more difficult to fabricate tellurite
glass fibers than silica fibers due to the smaller working

temperature range. When the glass crystallization tempera-
ture Tx is close to the glass transition temperature Tg, the
thermal expansion coefficient is increased, and the thermo-
stability is decreased. The small working temperature range
causes a degradation of the optical performance in the draw-
ing process of the fiber. By proportionally doping the rare
earth element, Tx and Tg can be optimized, and the working
temperature range can be enlarged. The tellurite glass T2 has
a Tx of 45°C and a Tg of 278°C. The working temperature
range is as wide as 179°C. Also, this big working temper-
ature range can decrease the thermal expansion coefficient
and increase the thermostability of the glass. Moreover,
the glass optical performance including the nonlinear refrac-
tive index, dispersion, and losses are stable in the drawing
process of the fiber.

For the fabrication of the tellurite-glass subwavelength
core PCF, we have used the improved stacking method
and the center vacuumizing method. In the case of the opti-
mized drawing speed and temperature, the size of the core
can be controlled by adjusting the extract pressure.
Although the melting temperature of T2 [77TeO2-
10Na2O-10ZnO-3PbO (%mol)] is lower than that of silica,
the subwavelength core PCF can be obtained using a rapid
drawing method (7 to 10 mm∕min). In order to decrease the
core size and avoid the collapsing of the air holes, the draw
speed and temperature must be optimized and the extract
pressure should be decreased.

Fig. 4 Simulation of light propagation in the proposed PCF:
(a) P ¼ 200, N ¼ 1, and (b) P ¼ 400, N ¼ 2.

Fig. 5 Simulation of light propagation in the proposed PCF:
(a) t0 ¼ 100 fs, (b) t0 ¼ 150 fs.
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6 Conclusion
In summary, the suppression of RSSFS in PCF with the tel-
lurite subwavelength core induced by the new geometrical
nonlinearity is demonstrated. The effects of the pulse
width, the pump power, and the propagation distance on
the suppression of RSSFS are analyzed. The simulation con-
ditions chosen are close to the physical truth, and the
obtained results are much more precise. Moreover, the sup-
pression effect on the fundamental soliton is more remark-
able than the high-order soliton. Our results more powerfully

prove the existence of the new geometrical nonlinearity. It is
shown that the geometrical nonlinearity is strongly depen-
dent on the geometrical structure of PCF. It can also be
expected that the geometrical nonlinearity may have a par-
ticular influence on the spectral components generated at the
short wavelength.
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