694 research outputs found

    Genetic diversity among Toxoplasma gondii isolates from different hosts and geographical locations revealed by analysis of ROP13 gene sequences

    Get PDF
    Toxoplasma gondii can infect almost all the warm-blooded animals and human beings, causing serious public health problems and economic losses worldwide. Rhoptry protein 13 (ROP13) plays some roles in the invasion process of T. gondii. In this study, sequence variation in ROP13 gene among 14 T. gondii isolates from different geographical locations and hosts was examined. The ROP13 gene was amplified from individual isolates and sequenced. Results show that the length of the ROP13 sequences was 1203 bp. In total, there were 44 variable nucleotide positions in the ROP13 sequences, and sequence variations were 0.1 to 2.0% among the 14 examined T. gondii isolates, representing higher rate in transversion than in transition. Intra-specific nucleotide variations were mainly at the second codon positions. Phylogenetic analysis of the 14 examined T. gondii isolates indicate that the ROP13 sequence was not a suitable genetic marker to differentiate T. gondii isolates of different genotypes from different hosts and geographical regions. Low variation in ROP13 gene sequence may suggest that ROP13 gene could represent a good vaccine candidate against toxoplasmosis.Key words: Toxoplasma gondii, toxoplasmosis, rhpotry protein 13 (ROP13), sequence variation, phylogenetic analysis

    Sequence variation in TgROP7 gene among Toxoplasma gondii isolates from different hosts and geographical regions

    Get PDF
    Toxoplasma gondii can infect a wide range of hosts including mammals and birds, causing toxoplasmosis which is one of the most common parasitic zoonoses worldwide. The present study examined sequence variation in rhoptry 7 (ROP7) gene among different T. gondii isolates from different hosts and geographical localities. Phylogenetic analysis of the examined T. gondii isolates was conducted using the maximum likelihood (ML) method. Sequence analysis revealed that 60 nucleotide positions were variable in the ROP7 gene sequences among the 19 examined T. gondii isolates, corresponding to sequence variations of 0 to 1.7%, which occurred at the first, second and third codons. Phylogenetic analysis indicated that sequence variation in ROP7 gene was low among the examined T. gondii isolates from different hosts and geographical localities, and that the ROP7 sequence was not suitable as genetic marker for the differentiation of T. gondii isolates. The results of the present study suggest that ROP7 gene may be a suitable vaccine candidate.Key words: Sequence variation, rhoptry 7 (ROP7) gene, Toxoplasma gondii, toxoplasmosis, phylogenetic analysis

    Preparation of La-doped BiFeO₃thin films with Fe²⁺ ions on Si substrates

    Get PDF
    Version of RecordPublishe

    c-Abl downregulates the slow phase of double-strand break repair

    Get PDF
    c-Abl tyrosine kinase is activated by agents that induce double-strand DNA breaks (DSBs) and interacts with key components of the DNA damage response and of the DSB repair machinery. However, the functional significance of c-Abl in these processes, remained unclear. In this study, we demonstrate, using comet assay and pulsed-field gel electrophoresis, that c-Abl inhibited the repair of DSBs induced by ionizing radiation, particularly during the second and slow phase of DSB repair. Pharmacological inhibition of c-Abl and c-Abl depletion by siRNA-mediated knockdown resulted in higher DSB rejoining. c-Abl null MEFs exhibited higher DSB rejoining compared with cells reconstituted for c-Abl expression. Abrogation of c-Abl kinase activation resulted in higher H2AX phosphorylation levels and higher numbers of post-irradiation γH2AX foci, consistent with a role of c-Abl in DSB repair regulation. In conjunction with these findings, transient abrogation of c-Abl activity resulted in increased cellular radioresistance. Our findings suggest a novel function for c-Abl in inhibition of the slow phase of DSB repair

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cotton, with a large genome, is an important crop throughout the world. A high-density genetic linkage map is the prerequisite for cotton genetics and breeding. A genetic map based on simple polymerase chain reaction markers will be efficient for marker-assisted breeding in cotton, and markers from transcribed sequences have more chance to target genes related to traits. To construct a genome-wide, functional marker-based genetic linkage map in cotton, we isolated and mapped expressed sequence tag-simple sequence repeats (EST-SSRs) from cotton ESTs derived from the A<sub>1</sub>, D<sub>5</sub>, (AD)<sub>1</sub>, and (AD)<sub>2 </sub>genome.</p> <p>Results</p> <p>A total of 3177 new EST-SSRs developed in our laboratory and other newly released SSRs were used to enrich our interspecific BC<sub>1 </sub>genetic linkage map. A total of 547 loci and 911 loci were obtained from our EST-SSRs and the newly released SSRs, respectively. The 1458 loci together with our previously published data were used to construct an updated genetic linkage map. The final map included 2316 loci on the 26 cotton chromosomes, 4418.9 cM in total length and 1.91 cM in average distance between adjacent markers. To our knowledge, this map is one of the three most dense linkage maps in cotton. Twenty-one segregation distortion regions (SDRs) were found in this map; three segregation distorted chromosomes, Chr02, Chr16, and Chr18, were identified with 99.9% of distorted markers segregating toward the heterozygous allele. Functional analysis of SSR sequences showed that 1633 loci of this map (70.6%) were transcribed loci and 1332 loci (57.5%) were translated loci.</p> <p>Conclusions</p> <p>This map lays groundwork for further genetic analyses of important quantitative traits, marker-assisted selection, and genome organization architecture in cotton as well as for comparative genomics between cotton and other species. The segregation distorted chromosomes can be a guide to identify segregation distortion loci in cotton. The annotation of SSR sequences identified frequent and rare gene ontology items on each chromosome, which is helpful to discover functions of cotton chromosomes.</p

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Construction and Nonclinical Testing of a Puumala Virus Synthetic M Gene-Based DNA Vaccine

    Get PDF
    Puumala virus (PUUV) is a causative agent of hemorrhagic fever with renal syndrome (HFRS). Although PUUV-associated HFRS does not result in high case-fatality rates, the social and economic impact is considerable. There is no licensed vaccine or specific therapeutic to prevent or treat HFRS. Here we report the synthesis of a codon-optimized, full-lengthMsegment open reading frame and its cloning into a DNA vaccine vector to produce the plasmid pWRG/PUU-M(s2). pWRG/PUU-M(s2) delivered by gene gun produced high-titer neutralizing antibodies in hamsters and nonhuman primates. Vaccination with pWRG/ PUU-M(s2) protected hamsters against infection with PUUV but not against infection by related HFRS-associated hantaviruses. Unexpectedly, vaccination protected hamsters in a lethal disease model of Andes virus (ANDV) in the absence of ANDV crossneutralizing antibodies. This is the first evidence that an experimental DNA vaccine for HFRS can provide protection in a hantavirus lethal disease model

    Brain tumor location influences the onset of acute psychiatric adverse events of levetiracetam therapy: an observational study.

    Get PDF
    To explore possible correlations among brain lesion location, development of psychiatric symptoms and the use of antiepileptic drugs (AEDs) in a population of patients with brain tumor and epilepsy. The medical records of 283 patients with various types of brain tumor (161 M/122 F, mean age 64.9 years) were analysed retrospectively. Patients with grade III and IV glioma, previous history of epileptic seizures and/or psychiatric disorders were excluded. Psychiatric symptoms occurring after initiation of AED therapy were considered as treatment emergent psychiatric adverse events (TE-PAEs) if they fulfilled the following conditions: (1) onset within 4 weeks after the beginning of AED therapy; (2) disappearance on drug discontinuation; (3) absence of any other identified possible concurrent cause. The possible influence of the following variables were analysed: (a) AED drug and dose; (b) location and neuroradiologic features of the tumor, (c) location and type of EEG epileptic abnormalities, (d) tumor excision already or not yet performed; (e) initiation or not of radiotherapy. TE-PAEs occurred in 27 of the 175 AED-treated patients (15.4%). Multivariate analysis showed a significant association of TE-PAEs occurrence with location of the tumor in the frontal lobe (Odds ratio: 5.56; 95% confidence interval 1.95-15.82; p value: 0.005) and treatment with levetiracetam (Odds ratio: 3.61; 95% confidence interval 1.48-8.2; p value: 0.001). Drug-unrelated acute psychiatric symptoms were observed in 4 of the 108 AED-untreated patients (3.7%) and in 7 of the 175 AED-treated patients (4%). The results of the present study suggest that an AED alternative to levetiracetam should be chosen to treat epileptic seizures in patients with a brain tumor located in the frontal lobe to minimize the possible onset of TE-PAEs
    corecore