9,220 research outputs found

    Extraordinary focusing of sound above a soda can array without time reversal

    Get PDF
    Recently, Lemoult et al. [Phys. Rev. Lett. 107, 064301 (2011)] used time reversal to focus sound above an array of soda cans into a spot much smaller than the acoustic wavelength in air. In this study, we show that equally sharp focusing can be achieved without time reversal, by arranging transducers around a nearly circular array of soda cans. The size of the focal spot at the center of the array is made progressively smaller as the frequency approaches the Helmholtz resonance frequency of a can from below, and, near the resonance, becomes smaller than the size of a single can. We show that the locally resonant metamaterial formed by soda cans supports a guided wave at frequencies below the Helmholtz resonance frequency. The small focal spot results from a small wavelength of this guided wave near the resonance in combination with a near field effect making the acoustic field concentrate at the opening of a can. The focusing is achieved with propagating rather than evanescent waves. No sub-diffraction-limited focusing is observed if the diffraction limit is defined with respect to the wavelength of the guided mode in the metamaterial medium rather than the wavelength of the bulk wave in air

    What absorbs the early TeV photons of GRB 221009A?

    Full text link
    The tera-electronvolt (TeV) light curve of gamma-ray burst (GRB) 221009A shows an unprecedentedly rapid rise at the beginning epoch. This phenomenon could be due to the strong absorption of photons and electrons within the emitting region. As the external shock expands outwards and the radius increases, the volume of matter also increases, leading to a gradual decrease in the optical depth for TeV photons. We explore several possibilities for the physical origin of this peculiar behavior. We calculate the optical depth for TeV photons due to annihilation with lower energy photons in the external shock and scattering by electrons produced via cascading of the TeV emission. Even under aggressive assumptions, we find the optical depths for these processes are orders of magnitude too small to explain the observed light curve. Other sources of absorbers, such as electrons in the ejecta or external shock, also do not yield sufficient optical depths. Therefore, the origin of the early peculiar TeV light curve remains uncertain

    The Radio Properties of Radio-Loud Narrow-Line Seyfert 1 Galaxies on Parsec Scales

    Full text link
    We present the detection of compact radio structures of fourteen radio-loud narrow line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array observations at 5 GHz, which were performed in 2013. While 50\% of the sources of our sample show a compact core only, the remaining 50\% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 108.410^{8.4} to 1011.410^{11.4} K with a median value of 1010.110^{10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, then implying a lower jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all these sources are very radio-loud with R>100R > 100, their jet properties are diverse, in terms of their milli-arcsecond (mas) scale (pc scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario, where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford-Znajek mechanism.Comment: 39 pages, 17 figures, ApJS accepte

    NeuroImage 84 (2014) 657–671 Contents lists available at ScienceDirect

    Get PDF
    journal homepage: www.elsevier.com/locate/ynimg Spatial–temporal modelling of fMRI data through spatially regularize

    Quantum delayed-choice experiment with a beam splitter in a quantum superposition

    Get PDF
    A quantum system can behave as a wave or as a particle, depending on the experimental arrangement. When for example measuring a photon using a Mach-Zehnder interferometer, the photon acts as a wave if the second beam-splitter is inserted, but as a particle if this beam-splitter is omitted. The decision of whether or not to insert this beam-splitter can be made after the photon has entered the interferometer, as in Wheeler's famous delayed-choice thought experiment. In recent quantum versions of this experiment, this decision is controlled by a quantum ancilla, while the beam splitter is itself still a classical object. Here we propose and realize a variant of the quantum delayed-choice experiment. We configure a superconducting quantum circuit as a Ramsey interferometer, where the element that acts as the first beam-splitter can be put in a quantum superposition of its active and inactive states, as verified by the negative values of its Wigner function. We show that this enables the wave and particle aspects of the system to be observed with a single setup, without involving an ancilla that is not itself a part of the interferometer. We also study the transition of this quantum beam-splitter from a quantum to a classical object due to decoherence, as observed by monitoring the interferometer output.Comment: 9 pages, 7 figures, Accepted by Physical Review Letter

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(d∗d^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure
    • …
    corecore