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Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detec-
tion of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data.
This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of
spatio-temporal prototypes (mixture components). Each prototype comprises a temporal model that explains
fMRI signals on a single voxel and the model's “region of influence” through a spatial prior over the voxel
space. As the key ingredient of our temporal model, the Hidden Process Model (HPM) framework proposed in
Hutchinson et al. (2009) is adopted to infer the overlapping cognitive processes triggered by stimuli. Unlike
the original HPM framework, we use a parametric model of Haemodynamic Response Function (HRF) so that bi-
ological constraints are naturally incorporated in the HRF estimation. The spatial priors are defined in terms of a
parameterised distribution. Thus, the total number of parameters in themodel does not depend on the number of
voxels. The resultingmodel provides a conceptually principled and computationally efficient approach to identify
spatio-temporal patterns of neural activation from fMRI data, in contrast to most conventional approaches in the
literature focusing on the detection of spatial patterns. We first verify the proposed model in a controlled exper-
imental setting using synthetic data. The model is further validated on real fMRI data obtained from a rapid
event-related visual recognition experiment (Mayhew et al., 2012). Our model enables us to evaluate in a prin-
cipledmanner the variability of neural activationswithin individual regions of interest (ROIs). The results strong-
ly suggest that, compared with occipitotemporal regions, the frontal ones are less homogeneous, requiring two
HPM prototypes per region. Despite the rapid event-related experimental design, the model is capable of
disentangling the perceptual judgement and motor response processes that are both activated in the frontal
ROIs. Spatio-temporal heterogeneity in the frontal regions seems to be associatedwith diverse dynamic localiza-
tions of the two hidden processes in different subregions of frontal ROIs.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Since the first report of the Blood Oxygen Level-Dependent (BOLD)
effect in humans, fMRI has been established as a powerful tool to
non-invasively study the link between cognitive processes and the
haemodynamic (BOLD) response that indirectly reflects evoked neuro-
nal activity (Ogawa et al., 1990). Because of the limitation in sampling
resolution and signal-to-noise ratio, statistical analysis of fMRI data
plays an important role in revealing this relationship (Friston, 2005;
Lindquist, 2008).

In particular, the primary aim of fMRI data analysis is the detection of
activated brain areas in response to given stimulus types. This is intrinsi-
cally related to estimation of the underlying temporal dynamics, usually
referred to as characterisation of the Haemodynamic Response Function
.kourtzi@bham.ac.uk

ghts reserved.
(HRF). Detection of brain activation requires specification of a HRF
shape throughout the brain. Due to low sampling resolution and poor
signal-to-noise ratio, an accurate estimation of HRF shapes is only avail-
able from a group of voxels eliciting signal fluctuations correlated with
the paradigm, usually referred to as region of interest (ROI). Thus, only
spatio-temporal modelling of fMRI data can account for the relationship
between a stimulus (or cognitive task) and the cortical response mea-
sured with fMRI (Derado et al., 2010; Gossl et al., 2001; Penny et al.,
2005; Woolrich et al., 2004b).

A standard approach to spatio-temporal modelling of fMRI data
spatially constrains (e.g. throughMarkov random field)mass univariate
methods that model fMRI time series in individual voxels (Bai et al.,
2009; Flandin and Penny, 2007; Friston et al., 2003; Kay et al., 2008;
Penny et al., 2005, 2006; Svensen et al., 2000; Woolrich et al., 2004b).
As an alternative to spatially constraining individual voxel-based
models, spatial mixing of several localized ‘prototypical’ univariate
models has been considered (Hartvig and Jensen, 2000; Kim et al.,
2010; Penny and Friston, 2003; Vincent et al., 2010). In comparison to
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the former approach, the latter one is computationally more efficient
(small number of free parameters) and yields more interpretable
models (each prototype can correspond to an underlying source of
neural activation triggered by the stimulus). In this contribution we
propose a new method for spatio-temporal modelling of fMRI data
that advances the latter approach in four crucial aspects:

1. Previously, the localized temporal prototypes have mostly been
General Linear Models (GLMs) (Friston et al., 1995) (see e.g. Penny
and Friston, 2003; Kim et al., 2010; Vincent et al., 2010), which could
be relatively simple (the onset and shape of HRF are assumed to be
known and remain the same across all prototypes/voxels). Instead,
we use as prototypes Hidden Process Model (HPM) (Hutchinson
et al., 2009), which enables us to infer the contribution of individual
cognitive processes to the observed fMRI data. As in HPM, the onset
times of HRF are allowed to vary. Crucially, we use parameterized
forms of hidden processes, thus imposing biological constraints on
the form of the HRF (which can differ for each cognitive process).

2. Recently, in cognitive science the investigation of inter-sessional
variations of temporal patterns (in addition to variations across
ROIs) has gained prominence (Duff et al., 2007; Mayhew et al.,
2012). Unlike the previously mentioned methods, our approach can
provide a complete, yet sparse representation of spatio-temporal
patterns of neural activation within individual ROIs.

3. Whereas all previous approaches have been validated on data from
block-design experiments, we devise a robust learning algorithm
that enables our approach to be used in modelling data coming
from relatively rapid event-related experimental designs.

4. As in Penny and Friston (2003), our model is a probabilistic model of
the data and so crucial properties, such as the number and location of
the underlying sources of neural activation (prototype number and
positions in the voxel space), can be inferred in a principled manner.
To determine the number of prototypes we have developed an
MCMC algorithm to compute the model evidence.

In general, prototype models for spatio-temporal analysis of fMRI
data are based on the assumption that the spatio-temporal behaviour
of fMRI data could be characterised by a small set of temporal patterns
that spread locally around sources (prototypes) in the voxel space.
This assumption could be rationalised by the well known fact that the
neural activation triggered by external stimuli usually has multiple
latent sources which are spatially well localized. The prototypes of tem-
poral patterns could be considered as cognitive signals originating from
those sources and fMRI data are generated by the superposition of these
signals. In this work, the temporal pattern and spatial spread of each
prototype are modelled separately, but a parametric approach is
adopted in both cases. However, the temporal and spatial aspects of
our model are not independent, since they are integrated into a unified
spatio-temporal model through a spatially regularized mixture. Within
this framework, the problem of activation detection is simply rendered
as an estimation problem if the number of latent sources is known.
Otherwise, model selection for mixture models provides a principled
way to determine this number.

One of the most widely used methods for fMRI data analysis is the
so-called Statistical Parametric Maps (SPM), introduced by Friston
et al. (1995). In SPM, not only the spatial and temporal aspects of fMRI
model are treated separately, but also the analysis is split into two
steps. In the first step, General Linear Models (GLMs) are fitted to
fMRI time series. Regressors of the GLM (columns of its design matrix)
represent the models' assumptions about the haemodynamic response
evoked by stimulation.1 Therefore, only GLM regression coefficients
are estimated from the data. In the second step, the estimated coeffi-
cients are tested against a particular hypothesis in order to detect the
activation. The essential difference between SPM and our approach is
1 Including possible HRF shapes for all evoked neural processes.
two-fold: 1) from the data we infer not only the response magnitudes
but also response shapes, together with response onsets; and 2) the
task of activation detection is done naturally in one step and in a
model based manner.

A variety of approaches have been suggested in the literature tomodel
and estimate HRFs (Bai et al., 2009; Friston et al., 2003; Kay et al., 2008;
Svensen et al., 2000;Woolrich et al., 2004b). They can be broadly grouped
into parametric, non-parametric, and semi-parametric approaches. In a
parametric approach, HRF is represented by an analytical function with
a small set of free parameters to be learned from the data. In a non-
parametric approach, the entire function or its values at discretised
times are to be estimated (FIRmodel). As this estimation problem is obvi-
ously ill-posed, some smoothness constraints need to be imposed
(Tikhonov regularization (Casanova et al., 2008; Kay et al., 2008),
Gaussian process prior (Marrelec et al., 2003; Zhang et al., 2008)). In a
semi-parametric approach, the HRF is modelled using a small set of
basis functions (Woolrich et al., 2004a). In ourwork,we adopt a paramet-
ric approach to HRF modelling. To our knowledge, this approach has not
yet been applied to fMRI data from rapid event-related experiments. Also,
the temporal model adopted in those studies is relatively simple as 1) a
single process is used to describe the haemodynamic response to
stimuli; and 2) the process onsets are assumed to be known. However,
a stimulus can trigger a number of different cognitive processes, that is,
visual analysis process, perceptual judgement process, and motor-
response process. These processes need to be represented individually
in the temporal model. The temporal model adopted in our work is
very similar to that adopted in previous studies (Hutchinson et al.,
2009). However, the non-parametric approach is adopted in that
work. Further, we used a rapid event-related design (Mayhew et al.,
2012) in contrast with previous work using long trials that may allow
easier separation of cognitive processes (Hutchinson et al., 2009).

Spatial priors are often used to extend amass-univariatemodel such
asGLM to a fully Bayesian spatio-temporalmodel for fMRI data (Flandin
and Penny, 2007; Penny et al., 2005, 2006). As mentioned above, a
common strategy is to impose a Markov random field (MRF) prior on
GLM regression coefficients (Gossl et al., 2001; Penny et al., 2005), or
on the estimates of HRFs (Hutchinson et al., 2009). In cases where
model residuals are treated as auto-regressive (AR) time series, MRF
priors are also imposed on AR parameters (Woolrich et al., 2004b). An
alternative to MRF is the so-called spatial mixture model (SMM)
approach. Initially, SMM was applied to activation detection by fitting
a mixture of three-dimensional Gaussian functions to those statistical
parametric maps from GLM analysis (Kim et al., 2010). Recently, the
SMM approach has been further developed towards a spatio-temporal
model of fMRI data, that is, a spatially regularized mixture model of
several GLM components. Examples are: a mixture of several GLMs
with different, but fixed design matrices (Penny and Friston, 2003)
and a Gaussian mixture model for the prior of GLM regression coeffi-
cients (Hartvig and Jensen, 2000; Vincent et al., 2010). Compared to
these previous studies, our approach allows not only different response
magnitudes but also varying HRF shapes across the mixture compo-
nents. Both magnitudes and shapes are to be estimated from the data.

The paper is organised as follows. After a brief introduction to spatio-
temporal modelling of fMRI data (Introduction section), we formulate
our model and describe a numerical algorithm to learn model parame-
ters in Methods section. In Results section, the validation of our
approach is presented using both synthetic and real data. The paper is
concluded with discussion in Discussion section.

Methods

Spatio-temporal modelling

Let a fMRI data set of V voxels and T volume (time steps) be denoted
by amatrixY∈RV�T, a fMRI time series at voxel v by a vectory vð Þ∈RT, a
fMRI measurement at voxel v and time t by a scalar y(v,t).
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Assume that K characteristically different and spatially localized tem-
poral patterns could be observed in Y. To formulate a spatio-temporal
model for Y, we first define the likelihood of y(v,t) as follows

p y v; tð Þð Þ ¼
XK
k¼0

p kjvð Þ � p y v; tð Þjkð Þ; ð1Þ

where index khere represents a temporalmodel that could explain the k-
th temporal pattern observed inY. Theprobability p(k|v) is theprior prob-
ability for the k-th model being chosen to generate fMRI time series y(v)
at voxel v and p(y(v,t)|k) is the probability for y(v,t) being predicted by
model k. Non-zero indices k represent models that account for prototyp-
ical patterns originating from some spatially localized sources of neural
activation; k = 0 indexes of a null model accounting for temporal pat-
terns that are not related to any neural activation.

The above definition could be rationalised by the fact that a small
number of prototypical temporal patterns is often observed in a partic-
ular ROI. At some voxels, one of those patterns can be clearly recognised
while the time series in other voxels resemble several patterns to differ-
ent degrees, which vary smoothly across the regions of interest.

The definition of p(y(v,t)) in Eq. (1) represents a space–time separa-
tion approach to spatio-temporalmodelling. It is clear that given a voxel
indexed by v, the probability p(k|v) is independent of time index t. The
density p(y(v,t)|k) is actually the likelihood function ofmodel k evaluat-
ed at y(v,t). Note that this likelihood function itself, p(y|k), is indepen-
dent of voxel index v. Let ΘSTM denote a parameter set of the above
model. Obviously, this set comprises of a set of spatial parameters and
a set of temporal parameters, denoted by ΘS and ΘT , which specify
the probabilities p(y(v,t)|k) and p(k|v), respectively. The definition
of p y v; tð Þjk;ΘT

� �
and p kjv;ΘS

� �
is given in the Introduction and

Spatial modelling sections, respectively.

Temporal modelling

Our temporal model of fMRI time series is schematically illustrated
in Fig. 1. In this model, the haemodynamic response of every single
stimulus breaks down into its constituents, that is, the haemodynamic
response of individual cognitive processes evoked by that stimulus.
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Fig. 1. Illustration of param
This represents a new approach to haemodynamic response modelling
and is firstly proposed in Hutchinson et al. (2009).

As the temporal models are independent of voxel index v, they are
considered as parametric model for y(t). Further, it is assumed that
except for the model with k = 0, all temporal models share a canonical
form. This canonical model is given as follows:

• A fMRI time series y(t) is composed of a signal component x(t) and a
noise component ϵ(t), i.e.

y tð Þ ¼ x tð Þ þ � tð Þ;

• The noise component ϵ(t) is modelled by white Gaussian noise with
noise variance σ2, i.e.

� tð Þ∼N 0;σ2
� �

:

We note that the assumption of i.i.d. noise can cause enhanced false-
positive rate in activation detection. However, as pointed out in Heller
et al. (2006) and Penny and Friston (2003), clustering-basedmethods
(such as ours) are typically much less prone to false positives caused
by the neglect of autocorrelation in fMRI noise;

• The signal component x(t) is given by

x tð Þ ¼
XS
s¼1

XP
p¼1

hp;s tð Þ;

whereS is the total number of stimuli in a timewindow, P is the num-
ber of cognitive processes evoked by a stimulus, andhp,s(t) represents
the haemodynamic response of the P-th process evoked by the s-th
stimulus;

• The haemodynamic response hp,s(t) is given by

hp;s tð Þ ¼ ap;s � δ t− tp;s þ τp;s
� �� �

⊗gp;s tð Þ;

where ap,s is responsemagnitude, tp,s is response onset, τp,s is response
delay, and gp,s(t) represents response shape function. Moreover, δ()
denotes delta function and⊗denotes convolutionoperator. As adopted
by Liao et al. (2002), we also use a time-shift model to account for the
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delay of the fMRI responses. Note that Liao et al. (2002) did make a
first-order Taylor approximation to the time-shift model to transform
a non-linear estimation problem into a linear one. We don't make
such approximation;

• The response shape function gp,s(t) is defined as a Gamma function
g(t) with its shape parameter κp,s and scale parameter θp,s, i.e.

gp;s tð Þ ¼ g tjκp;s; θp;s
� �

¼
tκp;s−1 exp − t

θp;s

� �
θp;s

� �κp;sΓ κp;s

� � :

The gamma function was firstly proposed as a canonical HRF in
Svensen et al. (2000).

We denote all haemodynamic response parameters by ΘT
h , that is,

ΘT
h ¼ ap;s; τp;s; θp;s; κp;s

n o
p ¼ 1;…; P s ¼ 1;…; S

:

Note that response onset tp,s is a known parameter andΘT
h is a 4·S·P-

dimensional vector of free parameters. AswehaveK temporalmodels of
this canonical form, the k-th model is specified by its parameter setΘT

h;k
and noise parameter σk

2. Its signal component is given by

xk tð Þ ¼ x t;ΘT
h;k

� �
;

and the corresponding likelihood is

p y v; tð Þjk;ΘT
k

� �
¼ N y v; tð Þ; xk tð Þ;σ2

k

� �
;

with ΘT
k ¼ ΘT

h;k;σ
2
k

� �
for k ≠ 0.

For the null model (k = 0), we have

x tð Þ ¼ bþ � tð Þ with � tð Þ∼N 0;σ2
0

� �
;

which accounts for a possible level shift of fMRI signal. Moreover, the
shift is assumed to be constant over time. The corresponding likelihood
is given by

p y v; tð Þjk ¼ 0;ΘT
0

� �
¼ N y v; tð Þ;b;σ2

0

� �
;

with ΘT
0 ¼

�
b;σ2

0
�
.

Fig. 2. Illustration of spa
In summary, the set of temporal parameters ΘT ¼ ΘT
0 ;Θ

T
1 ;…;ΘT

K

n o
.

includes totally K·(4·S·P + 1) + 2 free parameters: 4·K·P·S haemo-
dynamic response parameters, 1 level shift parameter, and K + 1 noise
parameters (Fig. 2).

Spatial modelling

As pointed out in the previous subsection, the prior probability p(k|v)
varies across the regions of interest. Clearly, it is an ill-posed problem to
estimate p(k|v) for every v. More importantly, it is known that evoked
neural responses are spatially contiguous. Therefore, it is natural to
impose smoothness constraints on the spatial variation of p(k|v).

Recall that ΘS denotes the set of spatial parameters that specify the
spatial prior p(k|v). Note that Given voxel v, this prior probability is
defined by the likelihood ratio

p kjv;ΘS
� �

¼
p vjk;ΘS

k

� �
XK

k¼0
p vjk;ΘS

k

� � ;

wherep vjk;ΘS
k

� �
is the likelihood ofmodel k of “influence” having voxel

v in its “region of influence”. In contrast, p kjv;ΘS
� �

is the probability of

voxel k “belonging” to model k, (y(t) = xk(t)). Note that we have ΘS ¼

ΘS
0 ;Θ

S
1 ;…;ΘS

K

n o
. This definition allows the smoothness constraints to

be placed on p(v|k) while ensuring that ∑k = 0
K p(k|v) = 1.

Assume that the haemodynamic response of a certain neural activa-
tion propagates froman epi-centre across thewhole ROIswith certain co-
variance structure. Mathematically, this could be modelled by a three-
dimensional Gaussian distribution. Hence, the likelihood is given by

p vjkð Þ ¼ N rvjμk;Σkð Þ; ð2Þ

where rv denotes the location of voxel v, μk is the mean vector of the
Gaussian distribution, and Σk is its covariance matrix. Note that we have
ΘS
k ¼ μk;Σkð Þx for k ≠ 0.
For the null model (k = 0), we havep vjk ¼ 0ð Þ ¼ 1

V;where V is a free
normalization parameter (i.e. ΘS

0 ¼ V). This definition is rationalised by
the assumption that the level shift of BOLD signals stays constant across
individual ROIs. Note that V ought to take a value larger than V (the
tial mixture model.
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number of voxels in a ROI). Otherwise, the null model could often dom-
inate over the other models. This is because the spatial extent of ROIs is
bounded and the probabilitymass of p(v|k) over someROIs could be sig-
nificantly smaller than 1.

In summary, the set of spatial parameters ΘS includes totally
9·K + 1 free parameters: 3·Kmeanparameters, 6·K covarianceparam-
eters, and 1 normalization parameter.

The posterior

In this work, a Bayesian approach is adopted to estimate all model
parameters, i.e. ΘSTM that are used to specify our spatio-temporal
model of fMRI data by maximizing the posterior distribution

p ΘSTMjY
� �

¼ p YjΘSTM
� �

� p ΘSTM
� �

where likelihood p(Y|ΘSTM) and prior p(ΘSTM) are specified in what
follows.

Given our model, all fMRI measurements are conditionally indepen-
dent in both spatial and temporal domains. Therefore, we have

p YjΘSTM
� �

¼ ∏
v
∏
t
p y t; vð ÞjΘT

;ΘS
� �

¼ ∏
v
∏
t

XK
k¼0

p kjv;ΘS
� �

� p y t; vð Þjk;ΘT
k

� �

¼ ∏
v
∏
t

XK
k¼0

p vjk;ΘS
k

� �
� p y t; vð Þjk;ΘT

k

� �
XK

k¼0
p vjk;ΘS

k

� �
¼ ∏

v
∏
t f 1

V � N y v; tð Þ;b;σ2
0

� �
XK

k¼1
N rvjμk;Σkð Þ þ 1

V

þ

XK
k¼1

N rvjμk;Σkð Þ � N y v; tð Þ; x t;ΘT
h;k

� �
;σ2

k

� �
XK

k¼1
N rvjμk;Σkð Þ þ 1

V

g:
Recall that ΘT

h;k represents a set of haemodynamic response param-
eters that is used to specify the k temporal model.

Finally, the prior p(Θ) is factorized as follows:

p bð Þ � ∏
K

k¼1
p ΘT

h;k

� �� �
� ∏

K

k¼1
p σ2

k

� �� �
� p Vð Þ � ∏

K

k¼1
p μkð Þp Σkð Þ

� �
:

We further assume the same prior onΘT
h;k for all k ≠ 0, i.e.p ΘT

h;k

� �
¼

p ΘT
h

� �
which can be factorized as follows:

∏
S

s¼1
∏
P

p¼1
p ap;s
� �

� p τp;s
� �

� p θp;s; κp;s

� �
:

For some parameters such as b, V, ap,s, and μk, no prior information is
available because of large variability across a pool of fMRI data sets.
Hence, their prior is set to a uniform distribution. For the rest of the pa-
rameters, we assume that the same prior should apply to all parameters
of the same type, for instance, all noise parameters across prototypes.
Therefore, the corresponding indices (e.g. k for the noise parameters)
are dropped in the remaining of this subsection.

For the variance parameter σ2, its likelihood profile is normally flat
for large σ2. To make the estimation of this parameter robust, its prior
is set to p σ2

� �
∝ 1

σ2ð Þ2
. Similarly, the prior of a covariance matrix (Σ) is

set to the so-called Jeffery prior, i.e. p Σð Þ∝ 1
Σj j2

where |Σ| is the determi-
nant of Σ.

For the response delay parameter τ, it is found in the previous EEG-
informed fMRI study (Mayhew et al., 2012) that τ varies roughly
between 0.1 s and 0.3 s. Hence, a Gaussian distribution is used to
represent this prior knowledge, with its mean equal to 0.2 s and its var-
iance equal to 0.01. For good understanding of this time scale, we note
that the time interval between two subsequent measurements is 1.5 s.

For the response shape parameter κ and θ, wemake use of its relation
to so-called time-to-peak parameter T and full-width-at-half-maximum
parameterW of a Gamma function as follows T = (κ − 1)θ andW ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln2

p
�

ffiffiffi
κ

p
θ, respectively. It is reasonable to assume that the latency

and duration of a haemodynamic response have an upper bound:
Tmax = 4 s and Wmax = 8 s (Friston et al., 1994, 1995). Thus, a loga-
rithmic barrier function is used to represent this prior knowledge
about the shape and scale parameter, that is,

p κ ; θð Þ∝ exp−log Tmax−Tð Þ−log Wmax−Wð Þ
:

Generative model

In general, clustering fMRI time series in different voxels doesn't
provide a generative model. As shown in Fig. 1 and Fig. 2, however,
our clustering-like spatio-temporal model is a generative model. There-
fore, the synthetic data can be generated by simulating the model with
the parameters that are specified as above. The simulation is split into 3
steps:

1. Generate the corresponding prototypical fMRI time series xk(t) for
each prototype k;

2. Compute the correspondingweight distribution p(k|v) for each voxel
v;

3. Generate synthetic fMRI time series at voxel v as y t; vð Þ ¼ xkt tð Þ
where kt are i.i.d. random samples drawn from p(k|v).

Gradient-based learning

As seen in the previous two subsections, we have two subsets of
model parameters to be learned from the data, those in temporal and

spatial models. They are ΘT
k

n oK

k¼1
and ΘS

k

n oK

k¼1
respectively. In this

work, these 2 subsets of parameters are optimized iteratively. For each
subset, a scaled conjugate-gradient optimization algorithm is employed.

It is worth to interpret the gradients of model parameters, although
their full expression is not given. To that end, we first define the poste-
rior probability of the model index k given the data y(t,v) as follows

p kjy t; vð Þ; Θ̂STM
� �

¼
p kjv; Θ̂S� �

� p y t; vð Þjk; Θ̂T
k

� �
XKek¼0

p ekjv; Θ̂S� �
� p y t; vð Þjek; Θ̂Tek� � ;

where we use the current parameter set

Θ̂STM ¼ Θ̂T
; Θ̂Sn o

¼ Θ̂T
k ; Θ̂

S
k

n oK

k¼1
:

This probability is also seen as the responsibility of the model
indexed by k for explaining the data y(t,v).

For the parameter vector ΘT
k of the k-th temporal model, we have

∇ΘT
k

−logp ΘSTMjY
� �n o

¼
XV
v¼1

XS
s¼1
f p kjy t; vð Þ; Θ̂STM

� �
�∇ΘT

k
−logp y t; vð Þjk;ΘT

k

� �n oj
ΘT
k ¼Θ̂

T
k
g :

This shows that the gradient of the negative log posterior probability
is a weighted sum of the gradients of the negative log prediction prob-
ability for every single fMRI measurement y(t,v) while the weights are
the corresponding responsibilities for the k model.
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For the spatial parameter vector ΘS
k , we have

∇ΘS
k

−logp ΘSTMjY
� �n o

¼
XV

v¼1

XS
s¼1

n
p kjy t; vð Þ; Θ̂STM
� �

−p kjv; Θ̂S� �� �
�∇ΘS

k
−logp vjk;ΘS

k

� �n o			
ΘS
k¼Θ̂

S
k

o
:

This shows that the gradient of the negative log posterior probability
is a weighted sum of the gradients of the negative log spatial prior for
every single fMRI measurement y(t,v). The weights here are the differ-
ence between the posterior and the prior probability for model k
being chosen to explain y(t,v), which reflects the fact that updating of
spatial priors is guided by how well the prior matches the actual distri-
bution of fMRI time series.

Model initialisation

For any gradient-based optimization algorithms, only local optimum
could be reached. The posterior distribution of a mixture-of-experts
model could be highly multi-modal. Therefore, a good initialisation is
crucial. In this work, we adopt a data-driven approach to initialise our
model's spatial parameters and a greedy approach to initialise its tem-
poral parameters.

First, the prototypes are (roughly) identified by clustering fMRI time
series with a K-means algorithm. In general, K-means clustering can be
rather sensitive to initialisation. Other more robust clustering tech-
niques could be used, e.g. Neural Gas (Fritzke, 1995; Martinetz et al.,
1993).2 However, we use small codebook sizes (up to 4) and in such
cases K-means with codebook vectors initialised in randomly picked
training points is more robust to initialisation than in the case of
larger codebooks. We have adopted a multiple random initialisation
approach — clustering with different random initialisations is repeated
50 times and the clustering solution with minimum distortion measure
is accepted.

After all voxels are grouped into K clusters, a good guess of the spa-
tial parameters can be obtained by computing the mean vector and co-
variance matrix of each prototype from the coordinates of voxels in the
corresponding cluster. Similarly, the temporal parameters of each pro-
totype can be initialised by fitting the corresponding temporal model
to the fMRI time series from those voxels in the corresponding cluster.

Both the clustering step and the greedy step could be repeated sev-
eral times to obtain better initialisation. At each iteration, we generate a
time series for each of the K temporal models and use these time series
as the initialisation for K-means clustering.

The above algorithm is based on the assumption that the number of
prototypes K is known. An extension of this algorithm is proposed to
obtain a good, fast initialisation of K + 1 and K − 1 prototypes from
the available K prototypes by using the so-called birth and merge oper-
ations described as follows:

Birth operation. A new prototype is needed if there is a group of
voxels that are notwell accounted for by the currentmodel. To iden-
tify those voxels, a cross-validation approach is adopted. In order to
do this, a subset of voxels that are to be pruned out is chosen ran-
domly. Prediction probabilities of the fMRI time series y(v) at those
voxels are computed as

Pred y vð Þð Þ ¼ ∏
t
p y t; vð ÞjΘ̂T

; Θ̂S� �
:

Recall that Θ̂
T
and Θ̂

S
denote the current temporal and spatial pa-

rameters, respectively. If there exists a group of voxels with lower
2 In Neural Gas (as an on-line training method) the order in which training inputs are
applied can have influence on the final clustering solution. Indeed as pointed out in Qin
and Suganthan (2004): … the initialisation problem is implicitly converted to the input se-
quence ordering issue for the sequential learning method.
Pred (y(v)) and they are also spatially contiguous,we add a newpro-
totype, representing the spatio-temporal pattern across those
voxels, to the current model. The temporal and spatial parameters
of this prototype are initialised in the same way as those of other
prototypes are initialised after K-means clustering of fMRI time
series;
Merge operation. To merge a pair of two prototypes, we compute so-
called responsibility vector for each prototype as

γk ¼
XT
t¼1

p kjy t;1ð Þ; Θ̂STM
� �

;…;
XT
t¼1

p kjy t;Vð Þ; Θ̂STM
� �" #⊤

and the (normalized) similaritymeasure dij between two prototypes
i and j is given by

dij ¼
γiγ

⊤
j

γiγ
⊤
i � γ jγ

⊤
j
:

The larger dij ∈ [−1, 1] is, the more overlapping these two clusters
are. The mean μnew and covariance matrix Σnew of the resulting
merged prototype are obtained as follows: μnew = πiμi + πjμj and

Σnew þ μnew μnew� �⊤ ¼ πi Σi þ μ iμ
⊤
i

� �
þ π j Σ j þ μ jμ

⊤
j

� �
with theweightsπi ¼ γi

γiþγ j
andπ j ¼ γ j

γiþγ j
, where γi and γj are comput-

ed as γi = ∑k γi(k) and γj = ∑ k γj(k), respectively.

Note that the birth and merge operations described above are relat-
ed to the SMEM algorithm (Ueda et al., 2000).

Model selection

In practice, the number of components K in a mixture model is un-
known. In our case, the number of prototypes required to explain
fMRI data needs to be learned from the data. In a fully Bayesian setting,
so-called Reversible Jump Markov Chain Monte Carlo (RJMCMC)
(Richardson and Green, 1998) is a principled computational method
to obtain a MAP estimate of K. An alternative approach is to consider
the determination of the number of prototypes as a model selection
problem. The criterion for model selection is so-called model evidence
(Berkhof et al., 2003). In thiswork, a relative estimate ofmodel evidence
is computed for a number of Ks with K N 1 relative to K = 1. To jointly
compute those estimates, we use so-called Wang–Landau algorithm
(Atchad and Liu, 2010) that is based on controlled Markov chains. For
the above purpose, this algorithm has better convergence properties
than other cross-dimensional MCMC algorithms.

FormodelMwithmodel parameter setΘ, model evidence is defined
as

p YjMð Þ ¼ ∫p YjΘ;Mð Þp ΘjMð ÞdΘ

wherep ΘjMð Þ is the prior on Θ andp YjM;Θð Þ is the likelihood of data Y
under the model M. Considering two competing models M1 and M2,
the so-called Bayes factor,

BF12 ¼ p YjM1ð Þ
p YjM2ð Þ ;

is computed and if this number is larger than 1, then M1 has a higher
posterior probability, and vice versa.

To compute the Bayes factor BF12, one can sample from both poste-
riors p Θ1jY;M1ð Þ and p Θ2jY;M2ð Þ. Those samples can be used to com-
pute p YjM1ð Þ and p YjM2ð Þ . However, the estimates could be very
inaccurate for the determination of BF12. A more efficient way to
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compute BF12 is the so-called acceptance-ratio method (Bennett, 1976)
in which one does sample from the joint posterior p ΘM;MjYð Þ ¼
p Mð Þ � p ΘMjY;Mð Þ; where p Mð Þ is the prior of model M. This can be
done by any MCMC algorithm which allows moves between M1 and
M2. By the detailed balance requirement of aMCMC algorithm,we have

p M1ð Þ � p Θ1jY;M1ð Þ � T Θ1→Θ2ð Þ ¼ p M2ð Þp Θ2jY;M2ð Þ
� T Θ2→Θ1ð Þ;

where T(Θ1 → Θ2) is the transition kernel that allows a move fromM1
toM2 and vice versa. By integrating both sides of detailed balance equa-
tion with respect to Θ1 and Θ2, it follows

p YjM2ð Þ
p YjM1ð Þ ¼

p M2ð Þ
p M1ð Þ �

EΘ1
T Θ1→Θ2ð Þð Þ

EΘ2
T Θ2→Θ1ð Þð Þ :

It can be seen that

p YjM2ð Þ
p YjM1ð Þ ¼

p M2ð Þ
p M1ð Þ→

EΘ1
T Θ1→Θ2ð Þð Þ

EΘ2 T Θ2→Θ1ð Þð Þ ¼ 1:

The above derivation shows that an estimate of relative model evi-
dence is obtained if the prior on M can be tuned so that the resulting
marginal posterior of model index should be uniform. In the Wang–
Landau algorithm, the prior distribution of model index is modified at
everyMCMC step by an additive changewhich is proportional to thedif-
ference between a flat histogram and the empirical histogram comput-
ed from a counter of themodel indices that have been sampled from the
posterior. Once the empirical histogram has become sufficiently flat, the
counter is set to null and the proportional constant is reduced by a cer-
tain factor. These two steps shall be repeated until the estimate of BF12
has been stabilised.

In this work, the transition kernel T(Θ1 → Θ2) that allows a move
from M1 toM2 is implemented by a RJMCMC algorithm with

TðΘ2→Θ1 ¼ J Θ2→Θ1ð Þ �min 1;
p M1ð Þ
p M2ð Þ �

p Θ1jY;M1ð Þ
p Θ2jY;M2ð Þ �

J Θ2→Θ1ð Þ
J Θ1→Θ2ð Þ


 �
;

where J(⋅→⋅) denotes a proposal density. To proposeΘ2 by givenΘ1, we
have Θ2 = f(Θ1,u) where f denotes a deterministic function and u is a
random vector drawn from some density, say q(u), which implies

J Θ2→Θ1ð Þ
J Θ1→Θ2ð Þ ¼

∇Θ1 ;u f Θ1;uð Þ
			 			

q uð Þ :

The RJMCMC algorithm in this work comprises two major ingredi-
ents, namely a birth proposal and a death proposal. To delete a proto-
type, one of the existing prototypes is randomly chosen. To propose a
new prototype, the responsibilities of the null prototype are computed
for every voxel v as follows

π0
v ¼

X
t
p 0jYt

v

� �
X

k

X
t
p kjYt

v

� � :
Also, compute μ⁎ and Σ⁎ as the weighted mean and covariance ma-

trix of all voxels in this ROI and computeΘ∗
t byfitting our canonical tem-

poral model into the fMRI time series from voxel v∗ = argmaxvπv0.
Following this, we draw a random sample Θ by

Θ∼N �jΘ� ¼ Θt
�; μ

�
;Σ�

� �
; eΣ� �

where eΣ is a predefined diagonal matrix that can be tuned to maximize
acceptance ratio.

A more complete RJMCMC algorithm should include both splitting
and merging proposals. In some cases such as ours, this could make
the computation of proposal densities very complicated. In contrast,
we have here j∇Θ1 ;u f Θ1;uð Þj ¼ 1 and q uð Þ∼N �j0; eΣ� �

because only
birth and death moves are considered.

Between two RJMCMC steps, we also sample from p Θ1jY;M1ð Þ or
p Θ2jY;M2ð Þ, up to the current K-value, using a Hybrid Monte Carlo
algorithm (Duane et al., 1987) which makes use of the gradients
we have derived for our MAP algorithm.

Results

In this section, we first present some results in a controlled experi-
mental setting using synthetic data that validate the algorithm devel-
oped for estimating parameters of our spatio-temporal model. As our
algorithm is a clustering-like method, it is worth noting that this ap-
proach is similar to so-called external measures in standard cluster val-
idation (Halkidi et al., 2001). Following this, we apply our algorithm to
real fMRI data obtained in a experiment designed to investigate which
brain areas are involved in a shape discrimination task (i.e. discriminat-
ing radial from concentric patterns) (Mayhew et al., 2012). This task is
known to engage occipitotemporal areas involved in the analysis of
the visual stimuli and frontal regions engaged in perceptual judge-
ments. Our model is assessed by its power to discriminate fMRI data
from these two brain circuits.

Description of fMRI data

All data sets we used in this study are taken from a recent study by
Mayhew et al. (2012). All observers participated in one scanning session
during which they performed a categorization task on Glass pattern
stimuli (i.e. are the stimuli concentric or radial?). For each observer,
we collected data from 7 or 8 event-related runs in each session. Each
run comprised 129 trials (128 trials across conditions and one initial
trial for balancing the history of the second trial) and two 9 s fixation
periods (one in the beginning and one at the end of the run). Eight con-
ditions (seven stimulus conditions and one fixation condition during
which only the fixation square was displayed at the centre of the
screen) with 16 trials per condition presented in each run. The stimulus
conditions comprised Glass patterns of 0° ± 1:5° or 90° ± 1:5° spiral
angle that were presented at 0, 25, 35, 50, 70, 85, and 100% signal levels.
The order of trials was matched for history (1 trial back) such that each
trial was equally likely to be preceded by any of the conditions. The
order of the trials differed across runs and observers.

Each trial in the categorization experiment described above lasted
3 s. The categorization task involved three processes, i.e. (1) visual anal-
ysis (stimulus integration and processing), (2) perceptual judgement,
and (3) motor response. Except for fixation trials, each trial started
with 200 ms stimulus presentation followed by 1300 ms delay during
which a white fixation square was displayed at the centre of the screen.
The stimulus evoked both visual analysis and perceptual judgement
with different process onsets, as indicated by the analysis of simulta-
neously collected EEG-fMRI signals. After this fixed delay, the fixation
dot changed colour to either green or red. This change in fixation colour
served as a cue for the motor response using one of two buttons. If the
colour cuewas green, observers indicated concentric vs. radial by press-
ing the left vs. right finger key, while if the colour was red, the opposite
keys were used (e.g. concentric = right key). The fixation colour was
changed back to white 300 ms before the next trial onset. The above
procedure can dissociate the motor response process evoked by the
cue for button press from the stimulus categories.

During the scanning sessions, EPI data (gradient echo-pulse se-
quences) were acquired from 24 slices (whole brain coverage, TR:
1500 ms, TE: 35 ms, flip-angle: 73°, 2.5 × 2.5 × 4 mm resolution).
These parameters resulted in two MR volumes collected per trial. As
we have 129 trials per run (S = 129), the number of fMRI measure-
ments for each run is therefore 258 (T = 258). At this temporal resolu-
tion, the timing of visual analysis and perceptual judgement could not
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be separated in the context of the rapid event-related design used for
the collection of fMRI data. A single process was therefore used to sum-
marize these two processes. At the same time, we use another indepen-
dent process to account for the button press. Thus, there exist two
separate processes in each trial (P = 2).

Recall that two distinct but overlapping processes were evoked by
the visual stimulus in each trial. Both the temporal characteristics and
spatial locations of these two processes can be identified by an EEG-
informed fMRI study. In this previous work we concentrated on two
components that previous studies suggest reflect distinct processes. In
particular, previous studies (Das et al., 2010; Johnson and Olshausen,
2003; Ohla et al., 2005; Tanskanen et al., 2008) showing differential re-
sponses to global forms at later rather than early latencies suggest that
latencies around the first component (86–119 ms) relate to visual
form integration, while latencies around the second component
(229–249 ms) relate to perceptual classification judgements. Subse-
quently, the EEG amplitudes at these two time instances from all indi-
vidual trials were used to construct two corresponding regressors in
an EEG-informed GLM. This analysis identified a number of ROIs
which were associated with the above processes.

We used a total of 320 independent data sets pooled across 10 par-
ticipants, runs and ROIs to validate the spatio-temporal model
presented in the Methods section. Moreover, we select four different
ROIs involved in visual analysis and/or perceptual judgement: Middle
Frontal Gyrus (MFG), Superior Frontal Gyrus (SFG), Primary Visual Cor-
tex (V1), and Lateral Occipital Gyrus (LO). Note that MFG and SFG are
two frontal ROIs whereas V1 and LO are two occipito-temporal ROIs.
We would have K = 1 if a ROI were functionally homogeneous. When
this assumption fails, the K-value should be greater than 1. Note that
the threshold for ROI-determination was set to 0.05 (with cluster
threshold correction) in the previous study. It is possible that our results
may change when a different threshold value was used. Particularly,
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Description of synthetic data

As pointed out previously, an artificial fMRI volume that resembles
real fMRI data is generated to assess how accurate the model parame-
ters can be learned from data when compared to ground truth values.
The size of that artificial volume is 10 × 10 × 10 (V = 1000), which is
larger than the usual size of ROIs. Further, we consider that there exist
two sources of neural activation. To account for this consideration,
two prototypes of temporal models (K = 2) are set up. The Gaussian
prior on the spatial distribution of their weights is displayed in the left
panel in Fig. 3 in terms of 68% isodensity ellipses. The ground truth
HRF for each of these two processes (P = 2) can be found in Fig. 4
(blue curves). Fig. 5 shows the temporal evolution of the corresponding
responsemagnitudes (S = 50).Moreover, we set TR = 0.2 for generat-
ing the artificial data, which resulted in 250 fMRI measurements (T =
250).

Results from synthetic data

As discussed in the previous section,model initialisation plays a cru-
cial role in parameter estimation using gradient-based algorithm (see
Methods section). To this end, a sophisticated initialisation procedure
has been developed. For the above synthetic data, such procedure
could produce the results of parameter estimation which are already
quite accurate. On the other hand, it is also interesting to find out
which kind of initialisation could lead to a failure in reasonable estima-
tion of model parameter. For this purpose, we try a non-informative
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initialisation of spatial parameters as shown in the middle panel in
Fig. 3. Further, we consider the initialisation of temporal parameter as
a deviation from ground truth to some degree that varies from 1% to
20%. It turns out that for the deviation up to 10%, a good overall estima-
tion of model parameter could still be achieved even with a non-
informative initialisation of spatial priors (see Figs. 4 and 5). For the
deviation beyond this limit, a much better initialisation of spatial
parameter is needed to obtain good results. For the example shown in
Figs. 3–5, we have statistically consistent evidence showing K = 2 has
significantly strongermodel evidence thanK = 1. To avoid determining
burn-ins, we started with K = 2 and the MAP estimates of its model
parameters. All models with different K-values were sampled for 1000
steps by a HMC sampler between two consecutive proposed moves
(RJMCMC steps). These RJMCMC steps in turn are the backbone of
Wang–Landau algorithm, which makes our algorithm a controlled
RJMCMC algorithm.

Results from fMRI data

The initialisation and learning algorithms described in the Methods
section have been applied to estimate both spatial and temporal param-
eters for all 320 fMRI data sets. Some of them were discarded from fur-
ther analysis as they contain a considerable amount of share motion
artefacts.

To validate our method, we reconstruct fMRI signals y(v,t) as
follows:

x̂ v; tð Þ ¼
XK
k¼0

p kjy v; tð Þ; Θ̂STM
� �

� xk t; Θ̂STM
� �

:

Fig. 6 shows that signal reconstruction is very satisfactory in all ROIs.
Averaged over all voxels in individual ROIs, one can hardly detect any
difference between the real measurements and the reconstructed sig-
nals. This validation procedure is similar to so-called internal measures
in standard cluster validation (Halkidi et al., 2001).
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Attempts weremade to further reducemodel complexity by assum-
ing that all stimuli in a particular condition have a fixed response mag-
nitude for each fMRI data set. But this has greatly reduced the ability of
our model to reconstruct fMRI signals. Consequently, this approach was
not adopted.

One finding from the results is that the estimated HRF remains
almost the same across runs, ROIs, and subjects whereas high variability
is observed in the response magnitude and its temporal evolution. Also,
the spatial distribution of prototypes shows some variability. The focus
of our analysis is to answer how many prototypes are needed to ade-
quately characterise fMRI data in single ROI.
Homogeneity vs. inhomogeneity within ROIs
Typically, single ROIs (or parcels) are often considered as anatomi-

cally and functionally homogeneous (Flandin et al., 2003). This implies
that one prototype (together with the null one) is already sufficient to
characterise a single ROI. To test this hypothesis, we first fixed themax-
imum number of prototypes in a single ROI to two, K = 2, and checked
whether these two prototypes determined from data are largely the
same. We also adopted a computationally expensive approach based
on Bayesian model selection to determine how many prototypes are
needed, in case one prototype was shown to be insufficient.

In particular, we studied:

1. to which degree the spatial distribution of two prototypes overlaps.
For each data set, we computed a triple of symmetrized KL diver-
gences, i.e. KLN 0N 1

;KLN 0N 2
;KLN 1N 2

� �
, where N 1 and N 2 represent

the Gaussian priors of two prototypes in the model while the
isodensity ellipse of N 0 is used to approximate the 3D shape of
ROIs. The results are displayed in Fig. 7;

2. to which degree the temporal evolution of response magnitudes of
the prototypes in the model is cross-correlated for a particular pro-
cess, i.e. visual–perceptual process (referred as process 1) and
decision-motor response process (referred as process 2). The com-
puted correlation coefficients are displayed in Fig. 8 in terms of the
mean and double standard deviation across runs and subjects.
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Fig. 7 shows that the spatial distribution of two prototypes in the
model is more overlapping for occipital (V1, LO) rather than frontal
(SFG and MFG) ROIs. Moreover, Fig. 8 shows that two prototypical pat-
terns of response magnitudes are positively correlated for V1 and LO
whereas such evidence is not present for MFG and SFG.

As discussed in the previous section, determining the number of
necessary prototypes from fMRI data is computationally very expensive
when model evidence is used. Therefore, approximation of model evi-
dence, such as BIC or free energy is often used. In this work, the model
evidence approach is tested with four example fMRI data sets. Each
data set is derived from one of four ROIs that are considered in this
work. Fig. 9 shows that two prototypes are clearly needed for SFG and
MFG while for V1 and LO, a single prototype is probably sufficient.
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Fig. 8. 95% confidence intervals of the estimated cross correlation coefficients between the time
and process 2 (motor-response) from prototypes 1 and 2.
Fig. 10 shows that the time series of response magnitudes are
temporally correlated. The response magnitudes of prototypes 1 are
positively cross-correlated with those of prototype 2 in two occipito-
temporal ROIs (V1 and LO). This observation could support the assump-
tion that these ROIs are functionally homogeneous. For two frontal ROIs
(MFG and SFG), however, the negative cross-correlation is observed.
This can be seen as a strong indication of functional inhomogeneity in
MFG and SFG. These observations indirectly indicate that one needs
more prototypes for modelling fMRI data in MFG and SFG.

To understand these results, it is important to differentiate be-
tween the cognitive processes represented in the considered ROIs
and the model. This is shown in Table 1. The spatial homogeneity
in occipitotemporal ROIs suggests that representation in these
areas relates to a single process, namely Process 1 that focuses on visual
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analysis. Similarly, the inhomogeneity in frontal ROIs could be caused by
overlapping representations related to Process 1, focusing on perceptual
judgement, and Process 2 (motor-response process). Note that Process 1
in our model represents both visual analysis and perceptual judgement
processes.

Understanding heterogeneity within ROIs
We have shown that our model selection mechanism (model evi-

dence) clearly favoured more than a single prototypical HPM within
frontal ROIs. In this section we will provide a more detailed analysis of
this observation. One can think of several reasons why more than one
prototype HPMs are needed to describe the representations in a ROI.
For example, the local structure of hidden processes (e.g. HRF, response
delays) can vary, requiring different local HPM prototypes. However,
perhaps not surprisingly, we did not observe this level of variability
within single ROIs. One can then ask:Where does the need for two pro-
totypical HPMs come from? To answer this question,we study the series
of response magnitudes for each process in each prototype.

Given a ROI, it is possible that one process is prominent in one local
region, whereas another process is prominent in another local region of
that ROI. Since both Process 1 and Process 2 are included in every HPM
prototype, a direct hypothesis testing for the existence of a particular
process within a local region, ‘governed’ by a particular HPM prototype,
could be done by checkingwhether its responsemagnitudes are vanish-
ingly small. However, this approach is not feasible because the fMRI
data was normalized to zero-mean and unit variance. Consequently,
the absolute value of response magnitudes estimated from fMRI data
Table 1
Presence of different cognitive processes in the ROIs and their counterpart in the
prototypical models.

Cognitive
process

Frontal ROIs (MFG
and SFG)

Occipitotemporal ROIs
(V1 and LO)

Process in
prototype

Visual analysis No Yes Process 1
Perceptual
judgement

Yes No Process 1

Motor response Yes No Process 2
is interpretable only relatively with respect to other processes in the
same HPM prototype.

Given that the HPMprototypeswere found to be similarwithin indi-
vidual ROIs, we hypothesise that if the need for more than one proto-
type arises, it is because at each time step one of the processes is more
prominent in one prototype, whereas the other process is prominent
in the other one. We next formulate a test for this hypothesis, consider-
ing the relative difference in response magnitudes between Process 1
and Process 2 in each of the two prototypes:

rks ¼ ak1;s−ak2;s;

where ap,sk is the responsemagnitude of process p in prototype HPM k to
the s-th stimulus.

For each time step s (time point ts) we define a binary variable3

Ss ¼ sign r1s � r
2
s

� �
:

If at presentation of the s-th stimulus one of the processes is promi-
nent in both prototypes (rs1 and rs

2 will have the same sign), we getSs ¼
1(indicating homogeneity of a single processwithin thewhole ROI). On
the other hand, if different processes are prominent in different regions
of ROI, we will have Ss ¼ −1. We concatenate such sequences across
subjects and runs, resulting in a long sequence for each considered ROI.

To visualise the difference among the four ROIs, in Fig. 11we plot the
cumulative sum ofSs,ℓ sð Þ ¼ ∑s

i¼1 Si, against s for each ROI. The curves
ℓ sð Þ for two frontal ROIs (MFG and SFG) increase with s much slower
than those for V1 and LO. Moreover, several considerably long sub-
curves with negative slope are found for MFG and SFG. Fig. 11 shows
that our hypothesis has more ground in the frontal regions than in the
occipitotemporal ones. One possible interpretation of this finding is
that in the occipitotemporal ROIs only Process 1 (focused on visual anal-
ysis) exists. Therefore, if two processes are used in prototypical HPMs in
those ROIs, we should not obtain heterogeneity of responsemagnitudes
3 In case a1,s
k = a2,s

k , we put rsk = −1.
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indicated by negative Ss . Indeed, the ℓ sð Þ curves of occipitotemporal
ROIs have much less negative contributions than those in frontal ROIs.
This agrees with the fact that both Processes 1 and 2 are expected to
be present in frontal ROIs, whereas we expect that only Process 1 exists
in occipitotemporal ROIs (see Table 1).

In this section, we have presented a set of evidence supporting our
hypothesis on functional homogeneity within individual ROIs. For
each individual evidence, there may exist concerns about its statistical
significance. Therefore, caution is needed to interpret those results. It
is however remarkable that all evidence leads to the same conclusion.

Discussion

We have presented a spatio-temporal model for the analysis of fMRI
data in individual brain regions. In this model, spatio-temporal behav-
iour of fMRI time series is summarized by a small number of prototypi-
cal temporal patterns. In our setting a prototypical temporal pattern is a
distribution of possible BOLD signals within a single voxel defined
through a Hidden Process Model (HPM). Each temporal prototype
comes with a spatial prior over the voxel space which determines its
“region of influence” over voxels in its vicinity; mixture-of-experts.
We have also presented a tailored optimization algorithm that is used
to determine the spatial prior of every prototype, as well as the HRF of
every process in the prototypes and the corresponding time series of
response amplitudes. This computationally efficient MAP algorithm is
further extended to a MCMC algorithm that can determine the number
of prototypes in a Bayesian model selection setting. We evaluated our
principled framework in a controlled experimental setting on the task
of identifying prototypical spatio-temporal patterns of real neural acti-
vation evoked by visual stimuli within several pre-determined ROIs.
As expected, the within-ROI variation of neural activations inferred
from the model differs substantially between frontal and occipital ROIs.

In this work, we have adopted a HPM approach to model single-
voxel fMRI time series. The essence of this approach is to treat the
contribution of overlapping cognitive processes to the observed data
separately. For the cognitive experiments from which our data were
generated, it is of interest to separate the process related to stimulus
analysis and perceptual judgement from the process related to the
motor response. Note that in our experimental setting the onsets of
the two processes were separated by about 1.5 s. However, the process
evoked by the stimulus is a lumped process comprising of visual stimu-
lus analysis and perceptual judgement. Separating and understanding
such processes that occur very close in time (at the temporal scale of
ms) is of key importance in cognitive neuroscience, which might be
more interesting. To this end, two approaches can be adopted:

1. The decision whether one lumped process or two separate processes
should be used in the temporal model can be formulated as a model
selection problem. For example, following Hutchinson et al. (2009)
the twomodels (one model with a single lumped ‘visual/perceptual’
process, the other model considering visual analysis and perceptual
judgement processes as two separate modelling entities) can be
compared in a data driven manner through cross-validation.

2. Following themethodology introduced in this study, one can impose
within a singlemodel two separate visual and perceptual parameter-
ized processes and then learn the global model using fMRI data.
Using the fitted model one can then compare the inferred individual
processes. This approach is not only computationally more efficient,
but crucially, it also allows for furthermodel based analysis, e.g. anal-
ysis of the difference in spatial variation of these two processes.

In this study, we have adopted the second approach to disentangle
the perceptual judgement processes from themotor response processes
in frontal ROIs (MFG and SFG). Itwas found that there ought to exist two
different processes in these ROIs. According to our model specification,
one of them (Process 1) is activated shortly after the stimulus presenta-
tion and another one (Process 2) is activated after participants were
asked to performmotor response. This finding was obtained by analyz-
ing the series of responsemagnitudes estimated for Processes 1 and 2 in
each of two prototypes. A plausible explanation of the observed evolu-
tion of response amplitudes is that within frontal ROIs, processes 1
and 2 have diverse dynamic localizations—which process is prominent
in which local sub-region of a given ROI changes over time. This makes
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the frontal ROIs “functionally inhomogeneous”. Also, we found that V1
was the most homogeneous ROI. This agrees with the fact that V1 is
involved primarily in visual analysis, whereas LO could be involved
not only in visual analysis but also in perceptual judgement through
feedback from frontal regions.

In model-based fMRI analysis, the inference of temporal fMRI
models can be rather complex as the temporal resolution of fMRI data
is typically low. Therefore, temporal constraints are usually imposed.
The strongest constraint one can find in the literature is as follows:
1) the HRF is fixed and known; and 2) response magnitudes are un-
known but constant in time. As mentioned in the Introduction section,
it is now generally accepted that the HRF needs to be learned from
fMRI data sets (Aguirre et al., 1998). However, it is still reasonable to as-
sume that the HRF is fixed within a single session (Donnet et al., 2006) and
across neighbouring voxels (Flandin et al., 2003). In this work, we take
this view of HRF variability, but allow for HRF to differ between the
overlapping cognitive processes. However, the constraint of con-
stant (within session) response magnitude is still commonly used
(e.g. Hutchinson et al., 2009). This view is questioned in Donnet
et al. (2006) as the assumption of constant response levels may not
hold for (rapid) event-related neuroimaging experiments of the
kind used in our work. Two solutions to this problem have been pro-
posed in Boynton et al. (2006), Donnet et al. (2006), and Ciuciu et al.
(2010): 1) the response levels are considered as i.i.d. Gaussian dis-
tributed random variables. The means and variances are estimated
from data; and 2) the response levels can still be considered as constant
for all stimuli of the same type, but are allowed to vary across the stimu-
lus types. The first approach is computationally very expensivewhile the
second onewould not work for our fMRI data. In ourwork, all stimuli are
of the same type but vary in the signal-to-noise ratio of Glass patterns.
Therefore, we estimate the response levels for each stimulus. It is
worthmentioning that in our approach the estimation of HRFmay inter-
fere with that of the response levels — we use Gamma function as the
parametric form of HRF and hence the height of HRF varies with its
shape and scale parameter settings. This implies that the response level
and HRF form should be jointly considered in order to properly interpret
our results presented in the previous section. In a fully Bayesian
treatment the posterior distribution would be characterised by one-
dimensional equi-probability structures in the HRF height vs. response
amplitude plane. However, it is interesting that despite no explicit con-
straints on HRF parameters and response amplitudes, under the MAP
estimation adopted in this study, the HRF heights were almost the
same across all considered ROIs.

Another distinct aspect of our model is that a probabilistic mixture-
of-experts approach is adopted to jointly take into account several pos-
sible temporal patterns. This idea can also be implemented in a GLM
setting as in Gershman et al. (2011). Both approaches are based on the
so-called superposition principle, albeit in two different ways. In our
model, the superposition is mathematically formulated as a mixture in
model space whereas the approach adopted in Gershman et al. (2011)
is formulated in terms of a mixture in signal space (also called mixing).
For themixture inmodel space, the determination of the number ofmix-
ture components has been extensively studied in the literature and a
Bayesian approach to this problem has been built on a sound theoretical
foundation. Thus, our approach can be more promising than mixing in
tackling the problem of model selection in fMRI analysis. Of course,
this is not limited only to activation detection. Similarly, the mixture-
based approach would also allow us to integrate out model uncertainty
in a principledmanner as in Hutchinson et al. (2009). More importantly,
the mixing approach could make the disentanglement of overlapping
processes impossible because there is an identifiability problem be-
tween the prototypes and processes. An alternative to our approach is
so-called Hierarchical Clustering as adopted by Hutchinson et al.
(2009), which is computationally more time-consuming than ours.

The spatial aspect of our model is mainly reflected in the way the
mixture coefficients are spatially regularized. Loosely speaking, this is
about modelling spatial “spheres of influence” of our HPM prototypes
(spatial fields). Essentially, there are two classes of approaches: 1) the
random field approach and 2) the basis function approach. The differ-
ence in these two approaches has already been highlighted in the Intro-
duction section. Both our approach and the one presented in Flandin
and Penny (2007) are two examples of the 2nd class, but differ subtly.
This is because a set of fixed basis functions, i.e. wavelet functions, is
used in Flandin and Penny (2007), whereas we estimate those basis
functions from the data. The basis functions have a canonical form,
namely a three-dimensional Gaussian. The advantage of our approach
is that it would allow us to naturally incorporate prior knowledge. Sim-
ilar problems were encountered in the semi-parametric approach to
HRF modelling (Woolrich et al., 2004a), in which non-sensible HRFs
could be produced. In Gershmanet al. (2011), three-dimensional Gauss-
ians with isotropic covariance matrices are used, which would intro-
duce severe restriction on the shape of “region of influence”. Thus, full
covariancematrices are used for the prototypes in ourmodel. An exten-
sion to using more complicated spatial basis functions, as those pro-
posed in Friman et al. (2003), is straightforward.

Most of the previous fMRI studies have focused on modelling the
temporal dynamics of BOLD signals at short time scales while the
inter-sessional variability is often considered as a random effect
(van Gerven et al., 2008). However, it is of great interest to model this
large-scale variability of haemodynamic responses in a more general
setting. This would find applications in various areas. Two examples:
(1) In cognitive science, it is known that learning changes BOLD signal
responses to cognitive tasks (Duff et al., 2007; Mayhew et al., 2012).
To understand the neural mechanisms that support improvements
due to learning, those changes need to be interpreted consistently and
specific hypothesis needs to be tested. (2) In clinical applications, it
would be very helpful to select best treatment for individual psychiatric
or neurological disorder patients if the brain response to treatment
could be tracked and predicted (Guo et al., 2008). In both cases, it is
advantageous to develop fMRImodels that can account for the temporal
correlations between BOLD signal responses across several sessions in a
sequence. One challenging problem is how to deal with the increased
computational burden. One solution is to select one or several represen-
tative voxels for each ROI, as it is often the case for group analysis or
meta analysis of fMRI data. However, this may not provide a sufficient
characterisation of BOLD signals across a single ROI. In contrast, the
spatio-temporal prototypes derived from our fMRI model represent a
sparse but yet sufficient characterisation of fMRI datawithin single ROIs.
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