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Abstract
Recently, Lemoult et al (2011Phys. Rev. Lett. 107 064301) used time reversal to focus sound above an
array of soda cans into a spotmuch smaller than the acoustic wavelength in air. In this study, we show
that equally sharp focusing can be achievedwithout time reversal, by arranging transducers around a
nearly circular array of soda cans. The size of the focal spot at the center of the array ismade
progressively smaller as the frequency approaches theHelmholtz resonance frequency of a can from
below, and, near the resonance, becomes smaller than the size of a single can.We show that the locally
resonantmetamaterial formed by soda cans supports a guidedwave at frequencies below the
Helmholtz resonance frequency. The small focal spot results from a small wavelength of this guided
wave near the resonance in combinationwith a near field effectmaking the acousticfield concentrate
at the opening of a can. The focusing is achievedwith propagating rather than evanescent waves. No
sub-diffraction-limited focusing is observed if the diffraction limit is definedwith respect to the
wavelength of the guidedmode in themetamaterialmedium rather than thewavelength of the bulk
wave in air.

1. Introduction

Diffraction limits the imaging resolution in acoustics and optics to about half a wavelength. In 2001, Pendry [1]
showed that a slab of an idealized negative indexmaterial would produce perfect images with resolution not
limited by thewavelength, whichwould be achieved by focusing evanescent rather than propagatingwaves. Even
though this idea has been shownnot towork in practice for far-field imaging [2], it has stimulated an active
search of ways to overcome the diffraction limit [3–7].One strategy, proposed by Lemoult et al [8–11] for both
electromagnetic and acoustic waves, relies on the time-reversal focusing in a locally resonantmetamaterial. In
acoustics, this approach has been implemented in a simple and neat experiment with an array of ordinary soda
cans serving asHelmholtz resonators [9]. Broad-band soundwith a center wavelength of about 0.8 mwas
focused onto a single canwith the focal spot size of about 1/25 of thewavelength in air.

In the present study, we aim to answer two questions: (i) Is time reversal essential for achieving the
extraordinary focusing demonstrated in [9]? (ii) Does the observed effect truly beat the diffraction limit with
respect to thewavelength of the acoustic wave propagating in themetamaterialmedium formed by soda cans?
To answer thefirst question, we arrange soda cans into a nearly circular array and focusmonochromatic sound
into the center of the array. The focal spot becomes progressively smaller as the acoustic frequency approaches
theHelmholtz resonance of the cans frombelow, with thewidth of the intensity distribution getting as narrow as
1/40 of thewavelength in air.We demonstrate, based on an analytical effective-mediummodel aswell as finite-
element calculations that the observed effect is due to a guided acoustic wave supported by the soda can array at
frequencies below theHelmholtz resonance. On approach to the resonance, thewavelength of the guidedmode
becomes smaller and the degree of its confinement to the array increases.We argue that the sharp focusing, albeit
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impressive if compared to thewavelength in air, does not beat the diffraction limit with respect to thewavelength
of the guidedmode propagating in the system.

2. Experiment

The experimental arrangement is shown in figure 1. Thirty seven empty soda cans were arranged in a
hexagonal array, with six commercial speakers placed symmetrically around the array. We used cans with a
volume of 350 cm3 (nominal beverage volume 330 ml) and an opening area of 4 cm2, similar to those used
by Lemoult et al [9], with the fundamental Helmoltz resonance at 420 Hz. A microphone was suspended at a
height of 12 ± 2mm above the cans. A mechanical delay line with 40 cm travel range was used to move the
microphone horizontally along a diameter of the array as shown in figure 1(b). The speakers were driven
continuously at a given frequency while the microphone was measuring a spatial profile of the acoustic
intensity with 0.61 cm steps.

Figure 2 shows acoustic intensity profiles at different frequencies aswell as a reference profilemeasured
without cans. The latter yields a focal spotwith a full width at halfmaximum (FWHM)of 31 cm at 410 Hz,
which amounts to 0.37 of thewavelength. The amplitude of a converging cylindrical wave is described by a Bessel
function J0(kr) where k is thewavevector and r the distance from the focal point, which yields a FWHMof 0.36λ
for the intensity, in a good agreement with the experiment considering that the speakers do not produce a perfect
cylindrical wave. In themeasurements with soda cans, the focal spot at the center of the array gets progressively
smaller as the resonant frequency is approached frombelow, becoming as narrow as 2 cm, or about λ/40, at
415 Hz. Above theHelmholtz resonance frequency, the intensity profile changes dramatically withmaxima at
the edges of the array and attenuation towards the center.

Onemay askwhether the effect we see is focusing or the excitation of an eigenmode of the arraywhichmay
just happen to have a sharpmaximumat the center. Indeed, a narrowpeak in the intensity profile does not
necessarily indicate focusing. For example,measurement on a single can near the resonance frequency also
yields a sharp peak above the opening of the can, as can be seen infigure 3(a). To verify that we do in fact focus
acoustic waves at the center of the array, we changed the arrangement of the speakers bymoving all of themby
20 cm along the scan axis as shown infigure 3(c). As one can see infigure 3(b), the intensitymaximum shifts by
one can in the same direction. In contrast, in the case of a single can the intensity peak remains at the same
position as one can see infigure 3(a). That a large displacement of the speakers is required to produce a small
displacement of the intensitymaximum is due to the fact that thewavelength of the acousticmode guided by the
array is smaller than that in air, as wewill see in the next section.

Just as a solid sphere can focus a convergent spherical wavewithout aberrations only to the center of the
sphere, our array yields the best focusing of a cylindrical wave to the center can; focusing is expected to
deteriorate as the focal pointmoves away from the center. Focusing on any can in the arraywould require
shaping the incident field as has been done, for example, in the time reversalmethod employed in [9].

3. Theory: waveguiding by 2D locally resonantmetamaterial

Before discussing the origin of the observed focusing phenomenon, we need to elucidate the nature of waves
propagating in themetamaterial formed by the soda cans. It is well known that in amedium containing resonant
inclusions, propagatingwaves hybridize with the local resonance resulting in an avoided crossing bandgap. In

Figure 1. (a) Experimental arrangement inside the anechoic room; (b) top view of the arraywith the scan line shown.
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optics, this phenomenon forms the basis of the classical dispersion theory (Lorentz oscillatormodel) [12]. In
acoustics, it has attracted renewed interestmore recently [13–19] in the context of sound propagation in
artificialmedia that came to be referred to as locally resonantmetamaterials [13–15].Onewell known example
of such locally resonantmedium, considered theoretically even before the advent of themetamaterials era, is an
array ofHelmholtz resonators in a duct exhibiting an avoided crossing bandgap at theHelmholtz resonance
[16, 19–22]. The peculiarity of our case is that we have an acoustic wave in a 3Dmedium interacting with a 2D
array of resonant inclusions. In this case, the behavior is different from the classic ‘avoided crossing’ picture
described above. Aswill be shownbelow bothwith a simple effectivemediummodel and finite element (FE)
analysis, an infinite 2D array of resonators supports a guidedmode that only exists below the resonant
frequency. On the approach to the resonance, thismode becomes increasingly confinedwhile its phase velocity
andwavelength become progressively smaller.

Figure 2.Acoustic intensity profiles along the diameter of the array at different frequencies. The bottom right panel shows an intensity
profilemeasuredwithout soda cans. Symbols are experimental points, connecting lines are guides to the eye. Dashed lines are Bessel
function envelopes as per equation (11).

Figure 3.Acoustic intensity profiles at 410 Hz above (a) a single can and (b) the array, with the speakers centeredwith respect to the
can/array (blue) and shifted by 20 cm in the positive scan direction (red). Symbols are experimental points, connecting lines are
guides to the eye. (c) Positions of the speakers in the centered (blue) and shifted (red) configurations.
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3.1. Effectivemediummodel
In the effectivemedium approach, the acoustic wavelength is assumed to bemuch greater than the average
distance between the resonators [14]. The resonators aremodeled asmass-on-a-spring harmonic oscillators
with pistons ofmassM attached to springs with spring constantK as shown infigure 4. The resonators are
randomly or regularly distributed in twodimensions, with the average fractional piston area F.

For aHelmholtz resonatorwith a zero neck length, the effectivemass is estimated as (16/3)π−3/2ρ0A
3/2,

whereA is the opening area and ρ0 is the density of air, whereas the spring constantK is given by ρ0c
2A2/V, where

c is the speed of sound andV is the volume of the resonator [22]. For our soda cans, thismodel yields an effective
mass of 9.23 mg and a spring constant of 64.8 Nm−1, resulting in a resonance frequencyω0/2π= 422 Hz in good
agreementwith the experiment [9].

The vertical position of a pistonZ obeys the equation ofmotion

ω̈ = − −Z Z
pA

M
, (1)0

2

where p is the deviation of the pressure above the piston from the equilibrium value andA is the area of the
piston. If thewavelength of sound is large compared to the average distance between the resonators, the sound
wave ‘senses’ an average displacement of the boundary =u FZ.z This leads to an effective boundary condition
relating the average displacement and pressure at the boundary z=0

ω̈ + = −u u
pFA

M
, (2)z z0

2

which replaces the boundary condition of zero displacement at the rigid boundary in the absence of resonators.
The acoustic velocity potential in the half-space above the resonators is described by thewave equation

φ Δφ∂
∂

− =
t

c 0. (3)
2

2
2

Weare looking for a harmonic wave propagating along thefloor in the x direction,
φ φ ω= −z t kx˜ ( ) exp(i i ),which yields the following equation for the z-dependence

φ ω φ∂
∂

= −
z

k
c

˜
˜, (4)

2

2
2

2

2

⎛
⎝⎜

⎞
⎠⎟

where c is the speed of sound in air. The general solution is given by

φ = +γ γ−a b˜ e e , (5)z z

where

γ ω= −k
c

. (6)2
2

2

1/2⎛
⎝⎜

⎞
⎠⎟

Atω> ck, we get an imaginary γ yielding а bulkwave propagating at an oblique angle; such solutions are of
no interest to us. Atω< ck, we get a real γ, inwhich case coefficient b in equation (5) should be equated to zero to
eliminate the unphysical divergent term, and the potential is given by

φ = γ ω− −ae e , (7)z t kxi i

which describes a guidedwave propagating along x and exponentially decaying along z. Plugging equation (7)
into the boundary condition given by equation (2) by expressing the displacement and pressure in terms of the
potential

Figure 4.Themodel system.
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we arrive to a dispersion relation forω and k,

ω ω ω ω− − =( )k
c

FA

M
. (9)2

2

2

1/2

0
2 2

2⎛
⎝⎜

⎞
⎠⎟

Figure 5 shows the frequency dispersion according to equation (9) aswell as the behavior of the confinement
length 1/γ for ρ0 = 1.23 kg m−3, c= 343 m s−1, F= 0.106 (calculated for dense hexagonal packing of the cans),
with the resonator parameters listed earlier in the text. In the limit of small k the dispersion approaches that of
the bulkwave in air, ω = ck,whereas in the opposite limit of large k the frequency asymptotically approaches the
resonance frequency ω .0 Onapproaching the resonance the guidedmode becomes increasingly confined to the
floor, as one can see infigure 5(b). The dispersion curve does resemble the lower dispersion branch of the classic
‘avoided crossing’ case [19].However, there is no upper branch: above ω ,0 the frequency acquires an imaginary
part, or, for a real frequency (as is the case in our experiment), thewavevector acquires an imaginary part, and
themode becomes evanescent. It should be noted that a bulkwavewith awavevector along x, which can
propagate along a rigid floor, no longer satisfies the boundary condition. The onlywave propagating along the
array is the guidedmode at frequencies below ω0.

4 Thus the situation is principally different from the
conventional avoided crossing behavior of an array of resonators in a duct [16, 19–21].

According to equation (9), on approaching the resonance thewavevector increases indefinitely, hence the
wavelength becomes infinitely small. However, the effectivemediummodel is only valid as long as the
wavelength ismuch greater than the distance between the cans. For amore accurate description of thewave
propagation above a hexagonal lattice of soda cans, we use FE calculations.

3.2. FEmodeling
Weused the acousticmodule inCOMSOLMultiphysics to calculate the dispersion relation of soda cans
arranged in a hexagonal lattice. Soda cansweremodeled as cylinders with rigidwalls [9] of 11.5 cm in height and
6.6 cm in diameter. The opening of a can in themodel was circular and centered at the axis of the cylinder, with
the same area of 4 cm2 as the opening of a real can. The height of the simulation domainwas 1 m,with rigidwall
boundary conditions at the ‘ceiling’. Floquet periodic boundary conditions were applied in order tofind acoustic
eigenmodes of an infinite 2Dhexagonal lattice.

Figure 6(a) shows the calculated dispersion along theΓΚ direction of the reciprocal lattice. Discretemodes
in the shaded area above the sound line ω = ck are due to afinite height of the simulation domain limited by the
computational resource. For a semi-infinite half space, the shaded areawill befilled by a continuumof bulk
waves propagating at oblique angles to thefloor. Themode below the sound line is guided by the can array, and
its dispersion is close towhat the simple effectivemedium theory has predicted. Figure 6(b) shows the
distribution of the sound pressure in the guidedmode in the vertical cross section above a soda can at
frequencies 360 and 420 Hz.While the effectivemediummodel correctly predicts increased confinement of the
guidedmode to the can array on approaching the resonance, FE calculations show that the acoustic field
becomes localized at the opening of a can, in agreementwith the experiment.

Figure 5. (a) Frequency of the guidedwave (solid line) and (b) its confinement length as functions of thewavevector.

4
Experimental results shown infigure 1(c) of [9] also indicate that only frequencies below theHelmholtz resonance can propagate along the

array.
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4.Discussion

Aswe have seen, thewave propagating above a 2D array of soda cans is a guidedmodewhosewavelength gets
progressively shorter on approaching theHelmholtz resonance of the cans. This is the principal reason for the
sharp focusing observed both in our experiment and in [9]. Themetamaterial structure acts similarly to a solid
immersion lensmade of amaterial with a high refractive index to enhance the imaging resolution [23]. The
time-reversal technique used in [9] certainly has an advantage in that it allows one to shape the incident acoustic
field to focus on any can and does not require the can array to be shaped as an immersion lens. However, time-
reversal is not whatmakes the intensitymaximumat the focal point so narrow.

The focusing is achievedwith propagating rather than evanescent waves. Even though the guidedmode
decays along the z direction, this decay has no bearing on the focusing in the x–y plane, inwhich thewave is
propagating. Thus the observed phenomenon has no relation to the imaging by evanescent waves described by
Pendry [1].

Superimposed on the focusing phenomenon is the near-field structure of the acoustic fieldwith sharp
maxima above the openings of the cans. It is instructive to discuss this behavior in terms of the Bloch expansion
of eigenmodes of a periodic structure

∑φ = ⋅ ⋅ce e , (10)k r

G

G
G ri i

where r= (x, y), k is the reducedwavevector, andG is a reciprocal lattice vector, with the dependence on z
ignored for the sake of simplicity. The sum in equation (10) is a periodic function of r reflecting the periodicity of
the lattice. In the low frequency limit the acoustic dispersion in a hexagonal lattice is isotropic, and the periodic
term in equation (10) is nearly independent on the direction of the reducedwavevector. Consequently, we can
construct a cylindrical wave described by a Bessel function just as in the isotropic case, with the intensity profile
given by

φ = J kr P r( ) ( ), (11)2
0
2

where P(r) is a lattice-periodic function. Thus the Bessel functionwill yield the envelope of the profile with a
FWHMof∼0.36λ, whereas the periodic termwill define thefine structure of the field. Thismodel is not expected
to be accurate for afinite structure used in our experiment (as opposed to an infinite 2D array) because of
reflections from the edges of the structure. However, it provides a qualitatively correct description of the
behavior seen infigure 2 for frequencies 360–400 Hz, where the Bessel function envelopes calculated according
to equation (11), withwavevector values from the FE calculations, are shown by dashed lines.When the ratio of
the central peak height to that of its neighbors exceeds a factor of two, as exemplified by the 400 Hz profile in
figure 2, the FWHMof the intensity profile will be determined by the central peakwidth alone, which, close to
the resonance, is determined by the size of the opening of a can.

Thus the combination of the reducedwavelength and the fine periodic structure of the acoustic fieldmakes
the ‘focal spot’ appear extra small, with awidth as narrow as 2 cmwhich amounts to less than 1/3 of the lattice
constant. However, as pointed out in [9], since one cannot focus between the cans, the actual ‘resolution’ of the

Figure 6. (a)Dispersion of acoustic waves propagating above the hexagonal array of soda cans calculated by FE (symbols) along theΓK
direction of the reciprocal lattice (see the inset) versus the effectivemedium calculation (solid line). The shaded area represents the
continuumof bulkmodes in the semi-infinite spacewhereas FE calculations yield discretemodes due to thefinite height of the
simulation domain. (b)Distributions of the sound pressure amplitude in the guidedmode above a soda can for points A andB of the
dispersion curve shown in (a).
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focusing does not exceed a single lattice constant. Furthermore, if we apply the traditional definition of the
imaging resolution as the ability to distinguish two separate objects from a single object [12] and think of a single
can as representing a ‘pixel’ of the object, then the best achievable resolutionwould be limited by twice the lattice
constant. Since on approaching the resonance the acoustic wavelength also becomes as small as about twice the
lattice constant (which corresponds to the Brillouin zone boundary in thewavevector space), there is no ‘sub-
wavelength’ resolution. The appearance of the latter results from a comparisonwith the acoustic wavelength in
air rather thanwith thewavelength of the guided acoustic wave propagating in the structure.

We realize that defining the focal spot size, resolution and diffraction limit in complexmedia is wroughtwith
difficulties. In a periodicmedium thewavevector is not uniquely defined; rather, it is definedmoduloG [24].
Consequently, thewavelength is not uniquely defined either. It is common to define thewavelength based on the
reducedwavevector within the first Brillouin zone, but this imposes a low bound on thewavelength, which
appears to be unphysical if we consider the limit of vanishing periodicity.What is then the diffraction limit in a
periodicmedium?Wedo not have a ready answer and hope that this report will stimulate a discussion of this
difficult issue.However, within themetamaterial (i.e., the effectivemedium)model the picture is clear: focusing
gets sharper as thewavelength of themode guided by the locally resonantmetamaterial gets shorter on approach
to the resonance.

5. Conclusions

Wehave demonstrated that focusing of sound in ametamaterial formed by a 2D array of soda cans results in an
increasingly narrow intensity peak as the acoustic frequency approaches theHelmholtz resonance frombelow.
We conclude that the broad-band time-reversal technique [9], while possessing remarkable capabilities in
manipulating soundfields, is not an enabling factor in achieving the sharp focusing. The observed phenomenon
results from the small acoustic wavelength in themetamaterial in combinationwith a near-field effect, i.e., the
localization of the acoustic intensity at the opening of a can at frequencies close to the resonance. Even though an
intensity peak as narrow as 1/40 of the acoustic wavelength in air has been observed, we do not believe that this
result, if properly interpreted, violates the diffraction limit. Furthermore, we found that the acoustic wave
propagating along theHelmholtz resonator array is a guidedmode becoming increasingly confined to the array
as its frequency approaches theHelmholtz resonance frombelow. In contrast to thewell documented case of an
‘avoided crossing’ bandgap, there is no upper branch above the resonance frequency. The phenomenon of
‘locally resonant’waveguidingwill be encountered in other physical systems; indeed, the dispersion of the lowest
mode electromagnetic wave guided by an array ofmetal wires [10, 25] is similar to the dispersion of the sound
wave guided by soda cans.
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