806 research outputs found

    Antioxidant and antibacterial activity of Toddalia asiatica (Linn) Lam root extracts

    Get PDF
    Background: Toddalia asiatica (Linn) Lam is a woody vine that is used medicinally in China, India, and East Africa. The aim of the present study was to examine the antioxidant and antibacterial activity of the roots of Toddalia asiatica (Linn) Lam (TA).Materials and Methods: The antioxidant capacity of TA roots was determined using 1,1 iphenyl-2-picrylhydrazyl (DPPH), 2,2´-azino-bis (3-ethylbenzo-thiazoline-6-sulfonicacid) (ABTS), and the ferric reducing antioxidant potential (FRAP) assay. The antimicrobial activity of TA against Staphylococcus aureus (SA), methicillin-resistant S. aureus (MRSA), and extended spectrum β-lactamase positive S. aureus (ESBLs-SA) was screened.Results: Methanol and ethyl acetate extracts of TA exhibited strong antioxidant activity. The methanol extract had the highest antioxidant activity (DPPH, IC50=41.45 μg/mL; ABTS, IC50=8.34 μg/mL; FRAP=1304.8 ± 60.38 μmol Trolox equivalent (TE)/g), which was close to that of the positive control, butylated hydroxytoluene (BHT). The petroleum ether extract of TA showed the highest antimicrobial activity (SA, minimum inhibitory concentration (MIC) = 250 μg/disc; MRSA, MIC=125 μg/disc) when compared with that of ethyl acetate extract (SA, MIC=250 μg/disc) and methanol extract.Conclusions: Investigation of methanol, petroleum ether, and ethyl acetate extracts of TA root revealed robust antioxidant activity in methanol extracts and strong antimicrobial activity against SA and MRSA in petroleum ether extracts.Keywords: Toddalia asiatica (Linn) Lam; antioxidant; antibacteria

    MiRNA-145 increases therapeutic sensibility to gemcitabine treatment of pancreatic adenocarcinoma cells.

    Get PDF
    Pancreatic adenocarcinoma is one of the most leading causes of cancer-related deaths worldwide. Although recent advances provide various treatment options, pancreatic adenocarcinoma has poor prognosis due to its late diagnosis and ineffective therapeutic multimodality. Gemcitabine is the effective first-line drug in pancreatic adenocarcinoma treatment. However, gemcitabine chemoresistance of pancreatic adenocarcinoma cells has been a major obstacle for limiting its treatment effect. Our study found that p70S6K1 plays an important role in gemcitabine chemoresistence. MiR-145 is a tumor suppressor which directly targets p70S6K1 for inhibiting its expression in pancreatic adenocarcinoma, providing new therapeutic scheme. Our findings revealed a new mechanism underlying gemcitabine chemoresistance in pancreatic adenocarcinoma cells

    Tetra-μ-benzoato-κ8 O:O′-bis­[(benzoic acid-κO)nickel(II)]

    Get PDF
    The title compound, [Ni2(C7H5O2)4(C7H6O2)2], is composed of two NiII ions, four bridging benzoate anions and two η1-benzoic acid mol­ecules. The [Ni2(PhCOO)4] unit adopts a typical paddle-wheel conformation. The center between the two NiII atoms represents a crystallographic center of inversion. In addition, each NiII ion also coordinates to one O atom from a benzoic acid mol­ecule. The crystal packing is realised by inter­molecular hydrogen-bonding inter­actions and π–π stacking inter­actions, with a centroid–centroid distance of 3.921 (1) Å

    MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Substantial data indicate that the oncogene microRNA 21 (miR-21) is significantly elevated in glioblastoma multiforme (GBM) and regulates multiple genes associated with cancer cell proliferation, apoptosis, and invasiveness. Thus, miR-21 can theoretically become a target to enhance the chemotherapeutic effect in cancer therapy. So far, the effect of downregulating miR-21 to enhance the chemotherapeutic effect to taxol has not been studied in human GBM.</p> <p>Methods</p> <p>Human glioblastoma U251 (PTEN-mutant) and LN229 (PTEN wild-type) cells were treated with taxol and the miR-21 inhibitor (in a poly (amidoamine) (PAMAM) dendrimer), alone or in combination. The 50% inhibitory concentration and cell viability were determined by the MTT assay. The mechanism between the miR-21 inhibitor and the anticancer drug taxol was analyzed using the Zheng-Jun Jin method. Annexin V/PI staining was performed, and apoptosis and the cell cycle were evaluated by flow cytometry analysis. Expression of miR-21 was investigated by RT-PCR, and western blotting was performed to evaluate malignancy related protein alteration.</p> <p>Results</p> <p>IC(50) values were dramatically decreased in cells treated with miR-21 inhibitor combine with taxol, to a greater extent than those treated with taxol alone. Furthermore, the miR-21 inhibitor significantly enhanced apoptosis in both U251 cells and LN229 cells, and cell invasiveness was obviously weakened. Interestingly, the above data suggested that in both the PTEN mutant and the wild-type GBM cells, miR-21 blockage increased the chemosensitivity to taxol. It is worth noting that the miR-21 inhibitor additively interacted with taxol on U251cells and synergistically on LN229 cells. Thus, the miR-21 inhibitor might interrupt the activity of EGFR pathways, independently of PTEN status. Meanwhile, the expression of STAT3 and p-STAT3 decreased to relatively low levels after miR-21 inhibitor and taxol treatment. The data strongly suggested that a regulatory loop between miR-21 and STAT3 might provide an insight into the mechanism of modulating EGFR/STAT3 signaling.</p> <p>Conclusions</p> <p>Taken together, the miR-21 inhibitor could enhance the chemo-sensitivity of human glioblastoma cells to taxol. A combination of miR-21 inhibitor and taxol could be an effective therapeutic strategy for controlling the growth of GBM by inhibiting STAT3 expression and phosphorylation.</p

    Cross-species microbial genome transfer: a Review

    Get PDF
    Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer
    corecore