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Synthetic biology combines the disciplines of biology, chemistry, information
science, and engineering, and hasmultiple applications in biomedicine, bioenergy,
environmental studies, and other fields. Synthetic genomics is an important area of
synthetic biology, and mainly includes genome design, synthesis, assembly, and
transfer. Genome transfer technology has played an enormous role in the
development of synthetic genomics, allowing the transfer of natural or
synthetic genomes into cellular environments where the genome can be easily
modified. A more comprehensive understanding of genome transfer technology
can help to extend its applications to other microorganisms. Here, we summarize
the three host platforms for microbial genome transfer, review the recent
advances that have been made in genome transfer technology, and discuss
the obstacles and prospects for the development of genome transfer.
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1 Introduction

Synthetic biology is an area that emerged in the early 21st century, and is based on
elucidating and simulating the basic laws of biosynthesis (Kiga and Yamamura, 2008; Zhang
et al., 2023). Its main application is the artificial design and construction of new biological
systems, such as the establishment of bio-manufacturing pathways for drugs, functional
materials, and energy substitutes (Bibi and Ahmed, 2020; Clarke and Kitney, 2020; Burgos-
Morales et al., 2021). Genome synthesis is an essential part of this. It enables us to create
living cells with fully controllable biological properties by de novo synthesis and assembly of
rationally designed genomes (Baby et al., 2019; Labroussaa et al., 2019; Venetz et al., 2019;
Zhang et al., 2020; Venter et al., 2022). Advances in synthetic genomics have facilitated the
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development of new tools andmethods for synthesizing, assembling,
modifying, and transferring complete microbial genomes (Lu et al.,
2018; Liu et al., 2019). However, due to the slow growth rate,
insufficient DNA recombination ability, and low transformation
efficiency of the organisms, the tools and methods cannot always be
performed directly in the original species. Therefore, it is necessary
to transfer the genome into model organisms such as Saccharomyces
cerevisiae, Escherichia coli, or Bacillus subtilis (Blount, 2015; Nielsen,
2019; Errington and Aart, 2020; Koster et al., 2022; Malci et al.,
2022). Model organisms have the advantages of a short life cycle, a
clear genetic background, easy cultivation, and a simple
experimental procedure, making them very suitable as a platform
for genome synthesis. The increasing size of artificially synthesized
genomes and species poses a challenge not only for large genome
synthesis, but also for genome transfer.

Whole genome transfer is the direct way to obtain complete
genomes or eukaryotic chromosomes in other species, but in the case
of unsuccessful genome transfer, a stepwise method can also be used
to transfer the target genome (Karas et al., 2015). Genome transfer is
divided into whole genome transfer and genomic fragment transfer.
Whole genome transfer usually involves direct transfer into
recipient cells (Karas et al., 2013a; Karas et al., 2014; Baby et al.,
2018). For example, the whole genome ofMycoplasma mycoides was
transferred into the related speciesMycoplasma capricolum, thereby
transforming one species into another (Lartigue et al., 2007). In
contrast, genomic fragment transfer usually requires model
organisms to act as platforms (Gibson et al., 2008b). A whole
genome transfer process is divided into three parts: the first part
involves the transfer of the entire genome or large genomic
fragments into a suitable model organism. The second part is
editing and modification, which is carried out using well-
established genetic systems in the model organism. The final part
is the transfer of the manipulated genome into the recipient cells of
interest. The combination of genome transfer technology and
genome engineering of model organisms is a powerful approach
for manipulating both synthetic and natural microbial genomes
(Gibson et al., 2010). If genome transfer technology can be applied to
more microbial species, it could revolutionize microbial genetics and
produce a new generation of artificially designed microorganisms.

In recent years, whole genome assembly technologies have
flourished, with genome transfer playing an important role in
this. With this aim in mind, this review sets out to describe the
background of microbial genome transfer, especially cross-species
transfer, focusing on the genome transfer using three different
model organisms as platforms. In addition, we discuss the factors
that influence genome transfer and examine its future prospects.

2 The background of cross-species
microbial genome transfer

In 2005, it was demonstrated that whole genomes from other
organisms could be transferred into B. subtilis (Itaya et al., 2005).
The research involved transferring the Synechocystis PCC6803
genome into the genome of B. subtilis cells, resulting in chimeric
chromosomes. Subsequent research extended this approach to
develop genome transfer methods using B. subtilis as a platform.
Then, in 2007, Carole Lartigue et al. achieved the first complete

genome transfer fromM. mycoides toM. capricolum (Lartigue et al.,
2007). In this experiment, the recipient genome was completely
replaced by the donor genome. Based on this, the Venter research
group achieved the complete chemical synthesis of the Mycoplasma
genitalium genome in 2008 (Gibson et al., 2008a; Gibson et al.,
2008b). Then, in 2010, the synthetic M. mycoides genome was
transferred into M. capricolum cells, producing new Mycoplasma
cells that could function normally (Gibson et al., 2010). The
researchers used yeast as a temporary and modified platform for
the synthetic genome (Gibson et al., 2008a; Gibson et al., 2008b).
The cloning of the entire bacterial genome as centromeric plasmids
in yeast was a breakthrough, allowing one-step genome transfer.
Several extensions of this method have been developed in order to
transfer whole prokaryotic genomes or eukaryotic chromosomes
(Table 1). Escherichia coli is a commonly used model organism, and
has the advantages of a short generation time, combined with simple
and well-understood genetic manipulation methods (Ruiz and
Silhavy Thomas, 2022). Although no studies have demonstrated
the transfer of whole genomes into E. coli, megabase-sized plasmids
can nonetheless be stably maintained in E. coli (Mukai et al., 2020).
The development of methods to clone and maintain large genomic
fragments in E. coli would greatly facilitate genome assembly and
transfer technology. As mentioned above, both B. subtilis and S.
cerevisiae are useful platforms for genome and chromosome
transfer, and E. coli is also an important platform for
maintaining the assembly of large DNA fragments.

3 Bacillus subtilis platform for genome
transfer

Bacillus subtilis is a typical platform used in many biotechnology
and synthetic biology applications, and has proven itself to be an
essential system for genome transfer (Johnston et al., 2014). Bacillus
subtilis has the ability to take up exogenous DNA, and the exogenous
DNA is usually integrated into the B. subtilis chromosome by RecA-
mediated homologous recombination (Yadav et al., 2012; Yadav
et al., 2014). Itaya et al. first proposed the use of the B. subtilis
genome as a vector (BGM vector) for genomic sequence transfer
(Itaya, 1995). They transferred a 48.5 kb length of E. coli prophage λ-
DNA into B. subtilis by iterative assembly. The BGM vector is a new
cloning and transfer system, and in order to test its ability to clone
and transfer large genomic DNA, the same team cloned
approximately 120 kb of mouse genomic DNA into BGM. The
results showed that the stability of the mouse DNA could be
maintained, proving that the BGM vector could at least carry
DNA fragments up to 120 kb (Itaya et al., 2000; Itaya et al.,
2003). Later, based on the BGM vector, the inchworm elongation
method was proposed, in which the positioning and orientation of
two DNAs will form an LPS (Landing Pad Sequences, LPS) array
(LPA), and as the LPA slides, it leads to elongation of the adjacent
target DNA (Itaya et al., 2005). To demonstrate the feasibility of this
approach, the whole 3.5 Mb genome of Synechocystis PCC6803 has
been completely transferred into the B. subtilis genome. However,
the inchworm extensionmethod requires long, contiguous DNA as a
template, which limits its application.

To overcome this limitation, Itaya et al. proposed the domino
method, which connects DNA sequences in BGM vectors by
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homologous recombination between overlapping sequences to
assemble large genomic fragments (Itaya et al., 2008) (Figure 1).
The domino method has several advantages. For example, it does
not require the preparation of large, high-purity DNA molecules,
the structure of the final recombinant genome can be designed as
desired, and the cloned DNA will maintain its structural stability.
However, the domino method is usually used to transfer DNA
smaller than 100 kb, and the transfer efficiency decreases
significantly when the size of DNA increases to 100 kb.
Therefore, researchers have developed a new conjugation
transfer system that eliminates the domino method’s
restrictions on the size of cloned DNA and thereby improves
the transfer efficiency, achieving rapid transfer of 875 kb DNA
(Itaya et al., 2018). Another study, aimed at simplifying the
domino method, was conducted by Juhas et al., who combined
Gibson Assembly and λ-red recombination in E. coli with RecA-
mediated homologous recombination in B. subtilis (Juhas and
Ajioka, 2016). The aim was to transfer bacterial artificial

chromosome (BAC)-mediated DNA into the B. subtilis
chromosome. Ultimately, they integrated the 10 kb DNA
fragment from E. coli K12 MG1655 into the B. subtilis
chromosome. To avoid irrational restructuring problems,
Ogawa et al. developed an inducible recA expression BGM
vector (iREX), which improved the stability of the inserted
fragment by deleting endogenous recA and introducing a
xylose-inducible recA expression cassette (Ogawa et al., 2015).
Thus, the expression of recA was controlled by xylose in the
medium.

4 Yeast platform for genome transfer

As a model organism, S. cerevisiae was the first eukaryote to be
sequenced and has long been used as a platform to transfer DNA
molecules from a variety of donor organisms in the form of yeast
centromeric plasmids and yeast artificial chromosomes (Cherry

TABLE 1 Summary of natural and synthetic genome transfer in yeast.

Source of genome Prokaryotic or
eukaryotic

Method Cloned genome
size (Mb)

G + C
content (%)

References

Mycoplasma genitalium Prokaryotic Whole chromosome cloned in
yeast

0.6 32 Benders et al.
(2010)

Mycoplasma hominis Prokaryotic Whole chromosome cloned in
yeast

0.665 27 Rideau et al. (2017)

Mycoplasma putrefaciens Prokaryotic Whole chromosome cloned in
yeast

0.8 27 Labroussaa et al.
(2016)

Mycoplasma pneumoniae Prokaryotic Whole chromosome cloned in
yeast

0.8 40 Benders et al.
(2010)

Mesoplasma florum Prokaryotic Whole chromosome cloned in
yeast

0.8 27 Baby et al. (2018)

Mycoplasma leachii Prokaryotic Whole chromosome cloned in
yeast

1.0 24 Labroussaa et al.
(2016)

Mycoplasma capricolum Prokaryotic Whole chromosome cloned in
yeast

1.1 24 Benders et al.
(2010)

MGE-syn1.0 (Minimal Genome of
Escherichia coli)

Prokaryotic CasHRA 1.03 — Zhou et al. (2016)

Mycoplasma mycoides Prokaryotic Whole chromosome cloned in
yeast

1.1 24 Karas et al. (2019)

Prochlorococcus marinus Prokaryotic Whole chromosome cloned in
yeast

1.66 36 Tagwerker et al.
(2012)

Spiroplasma citri Prokaryotic Whole chromosome cloned in
yeast

1.8 26 Labroussaa et al.
(2016)

Haemophilus influenza Prokaryotic Whole chromosome cloned in
yeast

1.8 38 Karas et al. (2013a)

Chlamydomonas reinhardtii
(chloroplast genomes)

Eukaryotic Whole chloroplast genome
cloned in yeast

0.204 34 O’Neill et al. (2012)

Phaeodactylum tricornutum Eukaryotic Chromosomes 25 and 26 0.497/0.441 48 Karas et al. (2013b)

Acholeplasma laidlawii Prokaryotic Segment’s cloning and
assembly in yeast

0.497/0.441 32 Karas et al. (2012)

Synechococcus elongatus Prokaryotic Segment’s cloning and
assembly in yeast

0.454 55 (Noskov et al.,
2012)
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et al., 2012; Vashee et al., 2020). Using yeast to transfer bacterial
genomes or eukaryotic chromosomes requires the insertion of
genetic elements from the yeast, including an autonomously
replicating sequence (ARS), a centromere (CEN), and a selection
marker to ensure that the cloned DNA can replicate and maintain
itself. Genomes with low G + C% do not usually require an ARS, as
the AT-rich consensus motif (ARS-like function) can occur
naturally within their own sequence (Lartigue et al., 2009; Tan
et al., 2021). To date, typical bacterial genomes and eukaryotic
chromosomes have been transferred into yeast, with genome sizes
ranging from 0.204 Mb to 1.8 Mb and GC content ranging from 24%
to 55% (O’Neill et al., 2012; Karas et al., 2013a; Labroussaa et al.,
2016).

The whole genome transfer into yeast can be carried out by
means of centromeric plasmids. The first approach is to insert the
yeast vector (ARS, CEN, and selection marker) into the genome
prior to yeast transformation. After this, the newly marked
genome can be transferred to yeast in two ways: one is
completely isolated from donor cells and then transferred to

the yeast, the other is transferred to the yeast by way of cell
fusion (Figure 2A). Before cell fusion, cells need to be treated with
enzymes, ultrasound, etc. to remove yeast cell walls and produce
spheroplasted cells. Yeast spheroplasts can not only be
transformed with purified DNA, but can also be fused with
other yeast strains or bacterial cells to allow DNA transfer
(Zhou et al., 2009; Benders et al., 2010; Tagwerker et al.,
2012). The advantage of this method is that the yeast vector
insertion site can be selected without affecting the viability of the
donor cells. Mycoplasma have been successfully cloned in yeast,
including M. genitalium (0.6 Mb), Mycoplasma pneumoniae
(0.8 Mb), and M. mycoides subspecies capri (1.1 Mb) (Benders
et al., 2010). These organisms were initially selected for genome
cloning because of their small genome size and special genetic
code (the UGA encoding tryptophan instead of a stop codon),
which avoids toxicity to the host yeast cells. Subsequently, other
bacterial genomes with standard genetic codes have also been
successfully transferred into yeast, including the 1.8 Mb genome
of Haemophilus influenzae and the 1.66 Mb genome of

FIGURE 1
Domino cloning and BReT (Bacillus recombinational transfer retrieval). (A) Domino elongated DNA in the BGM vector by cloning between GpBR
sequences, indicated by two arrows. BReT-mediated transfer occurs by homologous recombination between the pBR322 sequence of GpBR and the
incoming linearized BReT plasmid; (B) the domino process; and (C) key steps of the domino process. DNA fragments are assembled into the BGM vector
by homologous recombination between overlapping sequences. The dominoes were prepared in two plasmids, pCISP401 and pCISP402, with the
alternating use of the two antibiotic selection markers allowing for multiple rounds of domino extension (cat, chloramphenicol; erm, erythromycin).
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cyanobacterium Prochlorococcus marinus MED4 (Tagwerker
et al., 2012; Karas et al., 2013a). However, in another study,
the genome of Acholplasma laylawii PG-8A failed to transfer into
yeast using this method (Karas et al., 2012). The researchers
found that a gene encoding an extracellular endonuclease was
toxic to yeast; after inactivating this gene, its genome was found to
be stable in yeast. The second approach is transformation-
associated recombination (TAR) cloning, which exploits yeast’s
ability to efficiently recombine DNA fragments (Lee et al., 2015).
In this approach, the genome was isolated, then linearized
in vitro, and finally co-transformed into yeast with a linear

yeast vector containing homology sequences (Figure 2B)
(Kouprina and Larionov, 2003; 2016; Rideau et al., 2017). For
example, the genome ofMycoplasma hominis was transferred into
yeast in a single step, and successfully modified using the
CRISPR/Cas9 editing tool. A variation of this approach is the
CReasPy cloning (Figure 2B). It combines CRISPR/Cas9 gene
editing technology with the efficient homologous recombination
of yeast to simultaneously transfer and edit the bacterial genomes.
Using this approach, the 0.816 Mb genome ofM. pneumoniae was
successfully transferred into yeast (Ruiz et al., 2019). Another
method is CasHRA, which combines CRISPR/Cas9, yeast

FIGURE 2
Methods for transferring natural or synthetic genomes into yeast. (A) Yeast sequence, necessary conditions for the propagation of foreign genomes
in yeast (called the yeast vector), includes an autonomously replicating sequence (ARS), a centromere (CEN), a selection marker is inserted into the
genome by transformation, after which the entire genome is isolated or cloned into the yeast by induced cell fusion; (B) the genome to be transferred is
linearized and co-transformed into the yeast with the yeast vector, showing overlapping sequences and CReasPy cloning; (C) Cloning into yeast by
assembling multiple overlapping fragments; (D) Kar cross transfer YAC.
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homologous recombination, and yeast protoplast fusion (Zhou
et al., 2016). This involves the co-introduction of multiple large
circular DNAs into yeast by protoplast fusion, followed by
linearisation by gRNA-guided Cas9 protein cleavage, and
finally DNA assembly using the yeast homologous
recombination system. Using CasHRA, Zhou et al. successfully
assembled and transferred the 1.03 Mb minimal E. coli genome
into yeast.

Genomic segment transfer methods, an extension of the TAR
cloning technique, can be performed by using multiple overlapping
fragments of yeast transformation (Figure 2C) (Gibson et al., 2008b;
Karas et al., 2013b). For example, the 2.7 Mb genome of Synechococcus
elongatus with 55% GC content was divided into 30 overlapping
fragments with homologous arms, each approximately 112 kb in
length. Similarly, for eukaryotic chromosomes, Karas et al.
successfully assembled and transferred the chromosomes 25 and
26 of Phaeodactylum tricornutum in yeast using the TAR cloning
technique, starting from a DNA fragment of approximately 100 kb.
And in another study, themitochondrial genome of P. tricornutumwas
also successfully cloned and transferred into yeast, with a size of
60 kb–95 kb (Cochrane et al., 2020). The above studies have shown
that the transferred genomic fragments cannot exceed 200 kb, but the
addition of ARS can significantly increase the transferred and
assembled fragment length (454 kb) and increase the stability of
larger genomic DNA in yeast.

The yeast artificial chromosome (YAC) is an efficient tool for
transferring large genomic fragments (Coulson et al., 1988; Larin
et al., 1991). Most YAC libraries are constructed in haploid yeast
strains, and it is necessary to transfer the YAC from the host strain to
the target yeast strain. Researchers have developed a new approach
to efficiently transfer YAC into target yeast strains, a method known
as kar cross (Figure 2D) (Spencer et al., 1994). This approach is
based on the fact that yeast chromosomes can be transferred from
one nucleus to another between kar1 mutants and wild strains
(Georgieva and Rothstein, 2002). The principle is based on the fact
that, when yeast cells mate, nuclear fusion occurs immediately after
cell fusion, with no intervening cell or nuclear division, resulting in a
diploid. If the nuclear fusion gene (such as kar1, kar2, etc.) ismutated in
one of the mating partners, nuclear fusion cannot occur, resulting in a
heterokaryon containing two haploid nuclei (Dutcher, 1981; Yang and
Kuang, 1996). In this case, it is possible that the target chromosome,
such as YAC, could be transferred from one nucleus to the other
(Torres et al., 2007). For example, Spencer et al. used a kar1mutant as a
vector to transfer starch (sta2) and melibiose (mel)-utilizing genes into
industrial strains of S. cerevisiae by single-chromosomal transfer
(Spencer et al., 1992). In another study, Guo et al. used the kar1
mutant approach; the four synthetic yeast chromosomes (synII, synV,
synX, synXII) from the Synthetic Yeast Genome Project (Sc2.0) were
transferred separately into wild-type yeast (Guo et al., 2022). In
addition, Xu et al. used chromosome elimination via CRISPR-Cas9
to enable the chromosome transfer and demonstrated that
chromosome XIV (chrXIV) is critical for the thermotolerance trait
of the industrial strain Y12. In this study, the constructed heterozygous
haploid, in which chrXIV from Y12 was transferred into BY4741 and
the corresponding chrXIV of BY4741 was eliminated by CRISPR-Cas9,
showed similar thermotolerance to the Y12 haploid. Through
chromosome driving, the thermotolerance trait can be transferred
into BY4741 (Xu et al., 2020).

5 Escherichia coli platform for genome
transfer

Escherichia coli can maintain larger genomic fragments, which is
also important for genome transfer. Here, we will mainly review
E. coli as an assembly and transfer platform for genome or genomic
fragments. There is a natural recombination system in E. coli, the
RecA recombination system, which consists of the RecA and
RecBCD proteins (Kowalczykowski, 2000). In practice, however,
the RecA system has low recombination efficiency and requires a
long homologous sequence (about 500 bp), which limits its
application. Therefore, a more efficient in vivo recombination
system has emerged in E. coli has emerged, λRed/ET, which
relies on bacteriophage recombinases: either the Redα/Redβ
recombinase from phage λ or the RecE/RecT recombinase from
phage Rac (Zhang et al., 1998; Li et al., 2021). Redα and RecE are 5′-
3′ ATP-independent nucleic acid exonucleases that can digest
double-stranded DNA from the 5′end to the 3′end, exposing the
3′end of the DNA molecule, whereas Redβ and RecT are single-
strand binding proteins with annealing and invasion functions.
Redγ, another protein found in the λ phage, significantly
enhances the recombination efficiency of Redα/Redβ. It was
subsequently identified as an inhibitor of the RecB subunit of the
RecBCD complex, preventing the degradation of linear DNA
molecules by endogenous nucleases (Venkatesh and Radding,
1993; Paskvan et al., 2001; Murphy, 2007; Zhang et al., 2011).
The λRed/ET technology can efficiently manipulate cloned
genomes or genome-sized fragments (Yu et al., 2000). This
technique was first used to construct a 43 kb gene cluster
myxochromide S from Stigmatella aurantiaca in E. coli (Wenzel
et al., 2005). Subsequently, biosynthetic gene clusters from other
organisms have been constructed in E. coli, ranging in size from
11 kb to 106 kb (Wang et al., 2021). Previous recombination
methods in E. coli relied on homologous recombination between
linear and circular DNA molecules, which is less efficient (Zhang
et al., 1998; Muyrers et al., 1999). However, the approaches using
Redαβ or the truncated version of RecET are inefficient at mediating
the homologous recombination between two linear DNAmolecules.
Therefore, Fu et al. used a full-length RecE/RecT, which significantly
improved the recombination efficiency between two linear DNA
molecules (Fu et al., 2012). In addition, genomic fragments can be
cloned directly and transferred into E. coli by transformation. High-
quality genomic sequences are obtained using low melting point
agarose, ligated to vectors using enzymes, and then transformed to
transfer genomic sequences into E. coli. Bacterial artificial
chromosome (BAC) library construction technique is the
traditional method for obtaining and transferring cross-species
microbial genomic sequences into E. coli, but the method is
time-consuming, labor-intensive, and the genomic sequences
obtained are random. In recent years, many methods have
emerged to obtain and transfer the targeted microbial genomic
fragments into E. coli, such as CATCH, CAPTURE, ExoCET,
TAPE, CAT-FISHING, etc. (Jiang et al., 2015; Wang et al., 2018;
Enghiad et al., 2021; Cui et al., 2022; Liang et al., 2022). CATCH uses
CRISPR/Cas9 technology to obtain the target genomic fragments
and then uses Gibson assembly to clone the genomic fragments
in vitro. Zhu et al. used this method to successfully transfer 150 kb of
E. coli genomic sequence into E. coli. The CAPTURE method uses
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CRISPR/Cas12a to digest the genomic sequence and then uses a
DNA assembly approach to obtain the genomic sequence. Zhao et al.
obtained 113 kb of Actinomycetes genomic fragments in E. coli cells
using this method. ExoCET combines nucleic acid exonuclease with
the intracellular RecET protein of E. coli to synergistically obtain
genomic DNA. Using this method, Zhang et al. acquired the 106 kb
of genomic DNA from S. albus DSM41398. Li et al. developed the
TAPE method, which uses the linear plasmid vector to target the
genomic sequence, and they eventually transferred the 156 kb
genomic sequence of E. coli into the E. coli. The CAT-FISHING
technique used CRISPR/Cas12a to excise chromosome sequences
and ligate them to the vector, Tan et al. captured 145 kb-long
genomic DNA sequence from S. albus J1074 in E. coli by this
method. However, it is difficult to obtain high quality genomic
sequences by using low melting point agarose gels, and the length of
the transferred genome is also limited.

6 Conclusions and perspectives

The combination of genome engineering and genome transfer is a
new approach for manipulating natural and synthetic genomes. Whole
genomes and genomic segments in model organisms need to be
transferred into recipient cells that are suitable for their expression.
How to transfer the genome from the model organism into the final
recipient cell is the difficult part of genome transfer technology. This
requires the isolation and purification of large DNA in vitro or using
cell fusion to transfer the donor genome into the recipient cell with the
treatment of PEG. And due to genome size, phylogenetic distance, non-
specific nucleases, restrictionmodification systems, and some unknown
factors, the genome transfer is limited to a small set of mycoplasma
species (Figure 3).

Firstly, genome size is one of the important factors limiting
genome transfer. Usually, the genome is extracted for transfer, but
large DNA molecules are susceptible to breakage by shearing forces.
Extracting high quality, large volume, intact genomes using low
melting point agarose gels requires delicate technical manipulation.
To circumvent this problem, Karas et al. directly transferred the
bacterial genome into the yeast by PEG induction under conditions

that promote cell fusion (Karas et al., 2013a). Currently, H.
influenzae (1.8 Mb) is reported to be the largest genome
transferred into yeast, but it is unclear whether the larger
bacterial genome can be transferred into yeast. By improving cell
fusion methods, this problem may be overcome. In addition,
genome size is closely related to GC content. Genomes with
relatively high GC content require the insertion of additional
ARS to be stably maintained in yeast cells.

Secondly, the effect of the phylogenetic distance between donor
and recipient on genome transfer needs to be better understood.
When the donor genome enters the recipient cell, the recipient cell
must be able to transcribe and translate the genes of the donor
genome until the genome can replicate, transcribe, and translate on
its own (Lartigue et al., 2007; Labroussaa et al., 2019). The molecular
mechanisms of the recipient cell and the donor genome must be
compatible. Labroussaa et al. investigated the effect of evolutionary
distance between donor and recipient species on the efficiency of
genome transfer (Labroussaa et al., 2016). The results showed that
the closer the genomes of the donor and recipient cells were to each
other, the higher the transfer efficiency.

Thirdly, the non-specific nucleases. These can be secreted into
the environment or bound to membranes, and can even cleave the
donor genome, so they need to be inactivated before genome
transfer (Sharma et al., 2015). For example, the A. laylawii PG-
8A genomementioned above was successfully cloned into yeast after
knocking out the gene encoding the extracellular nucleic acid
endonuclease (Karas et al., 2012).

Finally, the restriction modification system is a defense mechanism
against foreign DNA invasion, and the donor genome is recognized as
exogenous DNA by the recipient cells. When transferring other
bacterial genomes from yeast, it may be necessary to methylate the
donor genome in vitro to protect it from restriction enzymes in recipient
cells. Karas et al. found that removing the restriction modification
system from the Mycoplasma mycoides JCVI-syn1.0 genome in yeast
increased the efficiency of genome retransfer (Karas et al., 2013a; Karas
et al., 2019).

In addition, there are some species-specific factors. For example,
when a donor genome enters a recipient cell, the two genomes can
recombine to form a mosaic or hybrid genome. The cytoskeleton

FIGURE 3
Influence factors on genome transfer. Whole genome transfer by cell fusion (i), or purified genomic DNA using lowmelt agarose block (ii). Genomic
fragment transfer (iii). R-M system: restriction modification system. Recombination: two genomes can recombine to form a mosaic or hybrid genome.
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and the nuclear membrane are also important influencing factors.
Brown et al. proposed to synchronize recipient cells into the M
(mitotic) phase, a period when the nuclear membrane and
cytoskeleton are in a state of remodeling. Experimental results
have shown that membrane fusion transfer using mammalian
cells synchronized to mitosis can be almost 300 times more
efficient (Brown et al., 2017).

Based on the above, the tasks required to adapt genome transfer
technologies to other species should include: (1) Finding new recipient
cells that are phylogenetically closer to the donor genome. (2)
Modifying the recipient cells: one example is the introduction of
genes associated with transcription, translation, and replication of
the donor genome into recipient cells prior to transfer. (3)
Improving protocols for the preparation of recipient cells:
synchronizing the recipient cells to the M phase (mitosis) during
cell fusion.
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