455 research outputs found

    Transient receptor potential channel 1 deficiency impairs host defense and proinflammatory responses to bacterial infection by regulating protein kinase CĪ± signaling

    Get PDF
    Transient receptor potential channel 1 (TRPC1) is a nonselective cation channel that is required for Ca2+ homeostasis necessary for cellular functions. However, whether TRPC1 is involved in infectious disease remains unknown. Here, we report a novel function for TRPC1 in host defense against Gram-negative bacteria. TRPC1-/- mice exhibited decreased survival, severe lung injury, and systemic bacterial dissemination upon infection. Furthermore, silencing of TRPC1 showed decreased Ca2+ entry, reduced proinflammatory cytokines, and lowered bacterial clearance. Importantly, TRPC1 functioned as an endogenous Ca2+ entry channel critical for proinflammatory cytokine production in both alveolar macrophages and epithelial cells. We further identified that bacterium-mediated activation of TRPC1 was dependent on Toll-like receptor 4 (TLR4), which induced endoplasmic reticulum (ER) store depletion. After activation of phospholipase CĪ³ (PLC-Ī³), TRPC1 mediated Ca2+ entry and triggered protein kinase CĪ± (PKC-Ī±) activity to facilitate nuclear translocation of NF-kB/Jun N-terminal protein kinase (JNK) and augment the proinflammatory response, leading to tissue damage and eventually mortality. These findings reveal that TRPC1 is required for host defense against bacterial infections through the TLR4-TRPC1-PKCĪ³ signaling circuit.Fil: Zhou, Xikun. University Of North Dakota; Estados Unidos. West China Hospital Of Sichuan University; ChinaFil: Ye, Yan. University Of North Dakota; Estados UnidosFil: Sun, Yuyang. University Of North Dakota; Estados UnidosFil: Li, Xuefeng. West China Hospital Of Sichuan University; China. University Of North Dakota; Estados UnidosFil: Wang, Wenxue. University Of North Dakota; Estados UnidosFil: Privratsky, Breanna. University Of North Dakota; Estados UnidosFil: Tan, Shirui. University Of North Dakota; Estados UnidosFil: Zhou, Zongguang. West China Hospital Of Sichuan University; ChinaFil: Huang, Canhua. West China Hospital Of Sichuan University; ChinaFil: Wei, Yu-Quan. West China Hospital Of Sichuan University; ChinaFil: Birnbaumer, Lutz. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas; Argentina. National Institute Of Environmental Health Sciences; Estados UnidosFil: Singh, Brij B.. University Of North Dakota; Estados UnidosFil: Wu, Min. University Of North Dakota; Estados Unido

    Identifying veraison process of colored wine grapes in field conditions combining deep learning and image analysis

    Get PDF
    Acknowledgments This work was supported by the National Key R&D Program Project of China (Grant No. 2019YFD1002500) and Guangxi Key R&D Program Project (Grant No. Gui Ke AB21076001) The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.Peer reviewedPostprin

    Six Thallus Surface Types of Coralline Algae with Descriptions of Two New Records of Amphiroa beauvoisii and Neogoniolithon setchellii in Sanya reef, China

    Get PDF
    Coralline algae are globally distributed calcifying species and play critical ecological roles to marine ecosystems by contributing significantly to their structural complexity and diversity. Thallus surface types of historical samples in Sanya coral reef reserve were studied based on the scanning electron microscope (SEM) method. Our results show six thallus surface types within the study area: Corallina-type, Jania-type, Leptophytum-type, Phymatolithon-type, Pneophyllum-type, and Spongites-type. The Phymatolithon-typeĀ isĀ the dominantĀ surface type in Sanya reefs. Two new record speciesĀ inĀ the regionĀ are described: Amphiroa beauvoisii and Neogoniolithon setchellii. Although thallus surface types provide useful diagnostics characters for distinguishing coralline algae at tribe or subfamily level, species identification needs to refer to the reproductive features. This is the first surface study of coralline algae in the South China Sea. This result provides the baseline data needed for the monitoring and management of reef-building organisms of coral reef in China

    Grasp Multiple Objects with One Hand

    Full text link
    The human hand's complex kinematics allow for simultaneous grasping and manipulation of multiple objects, essential for tasks like object transfer and in-hand manipulation. Despite its importance, robotic multi-object grasping remains underexplored and presents challenges in kinematics, dynamics, and object configurations. This paper introduces MultiGrasp, a two-stage method for multi-object grasping on a tabletop with a multi-finger dexterous hand. It involves (i) generating pre-grasp proposals and (ii) executing the grasp and lifting the objects. Experimental results primarily focus on dual-object grasping and report a 44.13% success rate, showcasing adaptability to unseen object configurations and imprecise grasps. The framework also demonstrates the capability to grasp more than two objects, albeit at a reduced inference speed

    Research on the Leading Value Drive of Rural Homestead Transfer under Rural Revitalizationā€”ā€”Based on the Evidences of China

    Get PDF
    With the development of urban-rural integration in China, the functional value of homestead bases has evolved from a single residential security value to a multiple composite values, and the property income of homestead bases has gradually become the value driver of transfer and the intrinsic demand of farm households. This paper takes Baitafan of Jinzhai County, Chongqing City, and Xiaofang Yu Village of Ji County as examples for in-depth discussion, and finds that the dominant value drivers of home base transfer mainly include three kinds: capitalization income, commercialization income, and non-farm employment income. The study concludes that it is important to give full play to the resource endowment effect and identify the dominant value of home base transfer according to local conditions to promote the standardized home base transfer and implement the rural revitalization strategy

    PuCRZ1, an C2H2 transcription factor from Polyporus umbellatus, positively regulates mycelium response to osmotic stress

    Get PDF
    Polyporus umbellatus is an edible and medicinal mushroom with the capacity to produce sclerotia. However, the mechanism of P. umbellatus sclerotia formation is unclear. CRZ1 is a C2H2 family transcription factor involved in the Ca2+-calcineurin signaling pathway, which has the function of regulating sclerotia formation, maintaining ion homeostasis, and responding to stress. In this study, we identified 28 C2H2 transcription factors in P. umbellatus genome, 13 of which are differentially expressed between mycelium and sclerotia, including PuCRZ1. Combining DNA affinity purification and sequencing (DAP-seq) and quantitative real-time PCR (qRT-PCR), three genes (PuG10, PuG11, PuG12) were identified as putative PuCRZ1 target genes containing a putative binding motif (GTGGCG) within their promoter. Yeast single hybridization (Y1H) and EMSA further confirmed that PuCRZ1 can bind to the promoter region of PuG10, PuG11, and PuG12. PuCRZ1 gene could reduce the sensitivity of NaCl in yeast cells. Furthermore, overexpression of the PuCRZ1 target gene, especially the FVLY domain containing gene PuG11, could improve the mycelia growth rate and mannitol tolerance in P. umbellatus. These results demonstrate that PuCRZ1 in the Ca2+-calcineurin signaling pathway plays an important role in mycelia growth, as well as osmotic stress tolerance

    A Review of the Extraction and Functional Properties of Soybean Protein components

    Get PDF
    Glycinin and Ī²-conglycinin are the major protein components of soybean, which are different in their structure. The preparation process can cause varying degrees of changes in the structures of glycinin and Ī²-conglycinin. In this paper, a brief overview of the structures of various soybean protein components is given, with a focus on the preparation process of soybean proteins. Moreover, the mechanism for the effect of the structure of soybean protein components on their functions is summarized. This review is expected to provide a reference for the quality control of soybean and soybean protein products

    Adaptive noise suppression for low-S/N microseismic data based on ambient-noise-assisted multivariate empirical mode decomposition

    Get PDF
    Microseismic monitoring data may be seriously contaminated by complex and nonstationary interference noises produced by mechanical vibration, which significantly impact the data quality and subsequent data-processing procedure. One challenge in microseismic data processing is separating weak seismic signals from varying noisy data. To address this issue, we proposed an ambient-noise-assisted multivariate empirical mode decomposition (ANA-MEMD) method for adaptively suppressing noise in low signal-to-noise (S/N) microseismic data. In the proposed method, a new multi-channel record is produced by combining the noisy microseismic signal with preceding ambient noises. The multi-channel record is then decomposed using multivariate empirical mode decomposition (MEMD) into multivariate intrinsic mode functions (MIMFs). Then, the MIMFs corresponding to the main ambient noises can be identified by calculating and sorting energy percentage in descending order. Finally, the IMFs associated with strong interference noise, high-frequency and low-frequency noise are filtered out and suppressed by the energy percentage and frequency range. We investigate the feasibility and reliability of the proposed method using both synthetic data and field data. The results demonstrate that the proposed method can mitigate the mode mixing problem and clarify the main noise contributors by adding additional ambient-noise-assisted channels, hence separating the microseismic signal and ambient noise effectively and enhancing the S/Ns of microseismic signals

    16S Next-generation sequencing and quantitative PCR reveal the distribution of potential pathogens in the Liaohe Estuary

    Get PDF
    The existence of potentially pathogenic bacteria seriously threatens aquatic animals and human health. Estuaries are closely related to human activities, and the detection of pathogens is important for aquaculture and public health. However, monitoring only indicator microorganisms and pathogens is not enough to accurately and comprehensively estimate water pollution. Here, the diversity of potentially pathogenic bacteria in water samples from the Liaohe estuary was profiled using 16S next-generation sequencing (16S NGS) and quantitative polymerase chain reaction (qPCR) analysis. The results showed that the dominant genera of environmental pathogens were Pseudomonas, Vibrio, Mycobacterium, Acinetobacter, Exiguobacterium, Sphingomonas, and Legionella, and the abundance of enteric pathogens was significantly less than the environmental pathogens, mainly, Citrobacter, Enterococcus, Escherichia-Shigella, Enterobacter, Bacteroides. The qPCR results showed that the 16S rRNA genes of Vibrio were the most abundant, with concentrations between 7.06 and 9.48 lg copies/L, followed by oaa gene, fliC gene, trh gene, and uidA gene, and the temperature and salinity were the main factors affecting its abundance. Variance partitioning analysis (VPA) analysis of spatial factors on the potential pathogenā€™s distribution (19.6% vs 5.3%) was greater than environmental factors. In addition, the co-occurrence analysis of potential pathogens in the estuary revealed significant co-occurrence among the opportunistic pathogens Testosteronemonas, Brevimonas vesicularis, and Pseudomonas putida. Our findings provide an essential reference for monitoring and occurrence of potentially pathogenic bacteria in estuaries

    Chlorophenyl thiophene silicon phthalocyanine: Synthesis, two-photon bioimaging-guided lysosome target, and in vitro photodynamic efficacy

    Get PDF
    The development of efficient photosensitizers with high singlet oxygen quantum yield, strong fluorescent emission, excellent photostability, and specific organelle targeting is in great demand for the enhancement of PDT treatment efficiency. This study designed and synthesized a new two-photon photosensitizer chlorophenyl thiophene axially substituted silicon (IV) phthalocyanine (CBT-SiPc). CBT-SiPc showed specific targeting of lysosomes in living cells and good biocompatibility. Furthermore, high 1O2 generation efficiency and high PDT efficiency in MCF-7 breast cancers under irradiation were also demonstrated. The novel CBT-SiPc showed great potential in the application of lysosome-targeted and two-photon bioimaging-guided photodynamic cancer therapy
    • ā€¦
    corecore